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1  Introduction

Mathematics is a core subject at primary schools [1, 2]. 
Being proficient in math is important for everyday life and 
for future careers [2, 3]. Yet many children underperform 
in math, possibly due to low interest, negative attitudes and 
sometimes even anxiety [2, 3]. At the same time staff short-
ages, overcrowded classrooms, and increased demand for 
special education decrease the time teachers have to address 
these issues [4, 5]. UNESCO estimates that an additional 
24.5 million teachers are needed in primary education 
worldwide to achieve universal basic education by 2030, 
and calls for unique classroom innovations [6]. Most poten-
tial are technical solutions that can mimic human interac-
tions, such as social robots [4, 5]. According to Vygotsky, 
social interaction plays a fundamental role in learning. It is 
often under the guidance and encouragement of knowledge-
able tutors that children progress from a level where they 
can comfortably solve problems independently to a more 
challenging level. Through collaborative dialogues, children 
seek to understand the tutor’s instructions, then internalize 
it and use this information in similar future occasions [7, 8]. 
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Abstract
Robot tutors can add value in education, but their impact usually differs depending on their social interaction skills. This 
study disentangled the effect of two specific robot social interaction skills on children’s math performance and their social 
perception of the robot. The first is to scaffold the explanations to children’s evolving math, and the second to personalize 
the math conversations to children’s preferences and interests. In a 2 (scaffolding: without vs. with) x 2 (personalization: 
without vs. with) between-subjects design, 113 children (9–12 years) were randomly assigned to one of the four condi-
tions. Findings after 4 child-robot interactions showed that scaffolding improved children’s response time but not the cor-
rectness of their answers, while personalization increased relationship formation. Examination of the underlying explain-
ing mechanisms revealed that both social skills must be salient enough to have the indented effect, that personalization 
satisfies children’s need to be understood, and that social presence influences feelings of friendship.

Keywords  Child-Robot interaction · Friendship · Math performance · Personalization · Scaffolding · Social presence

Received: 1 March 2024 / Revised: 4 December 2025 / Accepted: 5 December 2025
© The Author(s), under exclusive licence to Springer Nature B.V. 2026

Robot Social Skills: Influencing Children’s Performance and 
Robot Perception Through a Robot Math Tutor’s Scaffolding and 
Personalization

Simone M. de Droog1,2  · Mike E. U. Ligthart3  · Marianne Bossema1  · Mirjam de Haas2  ·  
Matthijs H. J. Smakman2  · Lamia Elloumi1  · Koen V. Hindriks3  · Somaya Ben Allouch1,4

1 3

https://doi.org/10.1007/s12369-025-01338-y
http://orcid.org/0000-0002-2899-7143
http://orcid.org/0000-0002-0768-9977
http://orcid.org/0000-0002-0622-0552
http://orcid.org/0000-0002-1001-8103
http://orcid.org/0000-0001-8500-0269
http://orcid.org/0000-0002-8789-6377
http://orcid.org/0000-0002-5707-5236
http://orcid.org/0000-0002-3502-4016
http://crossmark.crossref.org/dialog/?doi=10.1007/s12369-025-01338-y&domain=pdf&date_stamp=2026-1-23


International Journal of Social Robotics           (2026) 18:10 

While the use of social robots has shown to result in learn-
ing outcomes similar to those of human tutoring, choosing 
the appropriate social interaction skills that enhance chil-
dren’s learning remains challenging, and the skills should be 
carefully designed for the specific task at hand [5].

There are numerous ways in which robot interactions can 
contribute to a child’s learning. Davidson et al. [8] grouped 
the social interactions (and their related social skills) that 
take place in educational environments into three cat-
egories: educational interactions (focused on helping and 
explaining), collaborational interactions (focused on align-
ment), and relational interactions (focused on bonding). 
For the development of a social robot math tutor, the pres-
ent study focused on educational and relational interaction 
skills. This focus was informed by our initial focus groups 
with teachers and students, who helped to identify key 
design elements for social robots to support mathematics 
education in primary school classrooms [9]. First, the focus 
groups indicated that for a robot math tutor to be helpful, 
it is required to give step-by-step instructions and explana-
tions, adapted to the child’s math level [9]. The educational 
interaction skill here is scaffolding. Second, to make math 
fun, the robot tutor is also required to have prior knowledge 
of the child (e.g., name, preferences, interests) and to adapt 
the math activities to this information accordingly [9]. This 
requires the robot to get to know the child through small 
talk and to use this information to create pleasant, engaging 
and friendly interactions [8]. The relational interaction skill 
here is personalization.

Adaptivity through scaffolding and personalization is 
particularly important for long-term child-robot interac-
tions. Because learning takes time [10], robot math tutors 
need to remain compelling over a long period to help chil-
dren progress to higher math levels [11]. It requires the robot 
to remain meaningfully relevant by scaffolding the explana-
tions and instructions to a child’s evolving learning abilities 
(Zone of Proximal Development [7]), and to remain socially 
relevant as an interesting and safe learning partner by per-
sonalizing the conversations with both familiar and novel 
aspects [8, 12]. These type of interaction skills have shown 
to foster child-robot relationships, which in turn increased 
children’s willingness to continue the interactions [8, 12, 
13]. Thus, while the impact of robot tutors’ social skills on 
children’s learning gains is essential to warrant its value in 
educational environments, their impact on children’s social 
perception of the robot (and thus whether it is a compelling 
long-term learning partner) is essential for the sustainability 
of robots in educational environments.

For this reason, the aim of the present study was to inves-
tigate the impact of a robot math tutor’s social interaction 
skills (i.e., scaffolding and personalization) on both chil-
dren’s math performance and their robot perception after 

4 interactions with the robot over an 8-9-month interval. 
The study also investigated the underlying psychological 
mechanisms that could explain this impact. Figure 1a and 
b provide a summary of all the independent, mediator, and 
dependent variables, along with their expected relation-
ships, which will be further explained in the next section.

2  Related Work

2.1  Outcomes of Robot Tutors

2.1.1  Math Performance

Social robots are embodied computers specifically designed 
to interact with people in a human-like way [14]. They are 
increasingly developed and used for education, mostly in 
primary education for language learning and for children 
with autism [5, 11, 15]. Often introduced as learning com-
panions, children tend to treat them as social beings and 
value them for their physical presence, human-like features 
and behaviors, individual attention, patience, and non-
judgmental demeanor [11, 16, 17]. Educational reviews that 
examined the learning gains of social robots indicated that 
they are particularly effective for tutoring well-defined les-
sons and specific skills, such as mathematics [5].

However, studies on the impact of social robots on 
children’s math performance (e.g., math knowledge, test 
completion time, response correctness) remain limited, and 
their findings are mixed [18–22], with some finding positive 
effects on math learning outcomes [18] and others negative 
or no effects [19–22]. These mixed findings are the result 
of studying various aspects of robot-assisted math tutoring. 
For instance, Brown and Howard [18] investigated how a 
socially interactive humanoid robot engages children in 
math education, while Kennedy et al. [19] examined the 
negative effects of excessive social behaviors on learning 
outcomes. Other studies focused on gender differences in 
robot-assisted math learning [20], the role of robot-provided 
feedback [21], and how a robot tutor can support basic arith-
metic skills such as times tables [22].

Many of these studies looked at the role of a robot’s social 
skills, examining the effects of verbal encouragement [18], 
appropriate gestures and gaze [18, 19, 22], personalized 
speech [19, 22], and feedback strategies [21]. But because 
most either focused on a single social cue or combined mul-
tiple social cues without isolating their individual effects, 
it remains unclear how specific social behaviors influence 
children’s math learning outcomes, leading to these mixed 
findings. To address this gap, this study systematically iso-
lates and analyzes different social skills of a robot math 
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tutor, allowing for a clearer understanding of the distinct 
impact each skill has on children’s math performance.

2.1.2  Robot Perception: Social Presence and Friendship

While the overall learning gain of robots is well-docu-
mented in several reviews [e.g., [5, 13, 15, 16], the literature 
on children’s social perception of robots is more scattered 
due to its broader context and less-defined multidimensional 
meaning. A majority of these studies looked at precursors 
of relationship formation that measure whether children 
perceive the robot suited for relationship formation [23]. 
They are indications of children’s willingness to initiate a 
robot relationship, such as physical attraction, similarity, 

reciprocal liking, anthropomorphism, and social presence 
[23–25]. Other studies have focused more on the relation-
ship itself and looked at factors that measure whether chil-
dren perceive the robot as someone they have formed a 
relationship with, such as a friend or companion [23, 26]. 
Indications of a child-robot relationship are usually derived 
from human relationship characteristics such as feelings of 
connectedness, intimacy, reliance on another, attachment, 
and a desire for continued interactions [23, 25, 27, 28]. The 
present study focuses on social presence (as precursor) and 
friendship (as relationship).

Social presence is the perception that the other entity tak-
ing part in the interaction is a social being, thereby disre-
garding its artificiality [29]. This perception is crucial for 

Fig. 1  a Conceptual model of the 
impact of the robot math tutor’s 
scaffolding on children’s math 
performance and their social per-
ception of the robot. b Concep-
tual model of the impact of the 
robot math tutor’s personalization 
on children’s math performance 
and their social perception of the 
robot
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perceiving the robot math tutor as socially present will, in 
turn, increase children’s feelings of friendship for the robot 
(see Fig. 1a and b).

2.2  Robot Social Interaction Skills

2.2.1  Scaffolding

Scaffolding refers to any kind of guidance that helps children 
achieve new skills or levels of understanding they would not 
reach on their own [37]. The guidance by the tutor consists of 
supporting actions (i.e., scaffolds), such as providing hints, 
modelling, highlighting important aspects, or breaking the 
task into simpler sub-tasks [37, 38]. In response to a child’s 
progressive skill competence, the scaffolds should be gradu-
ally reduced or adapted to move toward skills that should be 
acquired next [37]. Although scaffolding differs depending 
on the educational content and specific learning needs, robot 
studies have provided some general guidelines for the suc-
cessful design of a robot’s scaffolding skills. Insufficient is 
to solely adapt the difficulty of the task [39], hint that the 
answer is wrong [38] or provide the correct answer [40]. In 
educational social interactions, children have a specific need 
for content-related feedback, where the robot explains why 
the answer is wrong and what the correct way is to approach 
the problem [8, 37, 38, 40]. This kind of detailed feedback 
helps children to judge the outcome of the tasks, internalize 
new information, and avoid making the same mistake next 
time [8, 40]. Preferably, the robot automatically recognizes 
when a child needs guidance and uses additional physical 
tools to visualize the verbal explanations [8].

In the context of mathematics, meta-analyses on the 
impact of digital math tools indicated that explanatory feed-
back is indeed more beneficial than corrective feedback 
alone [41, 42]. Particularly intelligent tutoring systems 
that use adaptivity, scaffolding and feedback seem to cre-
ate strong learning effects [41, 42]. Intelligent agents can 
support children’s learning by practicing content knowledge 
to foster mathematical principles, while at the same time 
providing immediate individual feedback to help discover 
new knowledge and avoid typical misconceptions [41]. 
This type of guidance is in line with the ideology of realistic 
mathematics education (RME) that perceives the learner as 
a reflective practitioner that organically develops models for 
mathematical concepts [43, 44]. During learning processes, 
children look back on their action and review its outcomes 
with the aim to discover new patterns or procedural rules 
and to modify future actions [45]. Progressive schematiza-
tion is an RME method whereby a tutor guides the child 
through hierarchically ordered steps that help solve the sum 
[46, 47]. For instance, the ‘small sum’ guided strategy for 3 
× 400 could be: 400 is 100 times bigger than 4, first solve 

experiencing true ‘social’ interactions with a robot [29]. In 
learning contexts, social presence has shown to foster posi-
tive learning experiences and improved learning by increas-
ing children’s interest in the learning material, compliance, 
and persistent motivation [HRI: [17], media characters: 
[30]]. More importantly, social presence has shown to elicit 
social responses toward the robot that indicate that the robot 
was treated more as an embodied social actor rather than 
a mere machine [29–31]. It is these social responses that 
potentially stimulate feelings of connectedness and relation-
ship formation with the robot [17].

Friendship was selected to define the relationship chil-
dren may form with the robot math tutor, because this term 
is widely used in both child-robot interaction and child-
media studies and entails most of the key concepts that 
characterize relationships with various nonhuman entities, 
such as parasocial interaction, closeness, and trust [HRI: 
[26]], media characters: [30, 32]. Research has demon-
strated that children can develop close relationships with 
robots, as reflected in friendship feelings, making them 
powerful learning tutors [17, 26, 33]. Children usually learn 
more from these socially and meaningfully relevant tutors 
because they trust information presented by someone they 
have bonded with [media characters: [30]]. In addition, rela-
tionships in learning contexts have shown to increase the 
motivation to attend to the educational content, foster emo-
tional engagement, and elicit the willingness for ongoing 
interactions [media characters: [30], HRI: [33], AI agents: 
[34]].

Both social presence and friendship require the robot to 
exhibit human-like qualities, including appropriate social 
skills that lead to meaningful social interactions [12, 28]. 
Specifically, the need-to-belonging theory stipulates that 
robots must be sufficiently social to satisfy the needs that 
children have in repeated social interactions [HRI: [28], 
HHI: [35]]. Nonetheless, there is a lack of systematic 
knowledge on the kind of social skills a robot should have 
in educational settings. In addition, little is known about 
the underlying psychological mechanisms that explain the 
impact of a robot’s social skills [25]. Therefore, the pres-
ent study investigates the impact of social skills that meet 
children’s needs in robot math tutor interactions, while also 
uncovering the underlying mechanisms that explain the 
impact of these social skills on children’s robot perception. 
Finally, although many studies hint on a potential relation-
ship between social presence and friendship (e.g., HRI: [11, 
24, 25, 36], media characters: [27]), empirical evidence is 
lacking. Presumably social presence is the first-degree social 
response that identifies and interprets the social dimensions 
of a robot which, in turn, determines the second-degree 
response, namely relational feelings for the robot [14, 25]. 
The present study will therefore explore (RQ1) whether 
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common ground and a strong bond through mutual shared 
experiences [8]. For robots to engage in these type of rela-
tional interactions, they need to simulate having memory by 
obtaining, storing and recalling personal information, such 
as using the child’s name in greetings, storing the child’s 
interests, recalling previously discussed topics, and adapt-
ing behaviors to the child’s needs [HRI: [17, 28], AI agents: 
[52]]. The personal information is often naturally obtained 
during small talk by asking children direct questions or 
eliciting information via self-disclosure [HRI: [12, 53], AI 
agents: [52]]. The robot is then programmed to apply this 
information with the aim of making child-robot interactions 
feel more intimate and substantively engaging for a longer 
period of time [12, 28].

Studies have demonstrated that robots applying person-
alization (as in having a persistent memory) are perceived 
as more intelligent [53] and treated as an embodied social 
actor [12] as if they have a social presence. Children also 
feel more close to these type of robots and perceive them 
as friends [28, 33, 53, 54]. This could be because persis-
tent memory in robots fulfills children’s interpersonal needs 
to be recognized and understood [28]. First, being recog-
nized indicates that the relationship means something and 
might go somewhere [28]. Using the child’s name, personal 
greetings, and details from previous interactions signal to a 
child that he/she is being remembered by the robot [12, 53]. 
Already after the first interaction children have a tendency 
to attribute animistic characteristics to the robot, like hav-
ing a recognition brain, and come to expect robots to rec-
ognize them in future interactions [55, 56]. Second, feeling 
understood is a characteristic of intimate friendships, which 
becomes increasingly important during middle childhood 
[HHI: [57], HRI: [58]]. By self-disclosing personal infor-
mation, friends come to understand each other on a personal 
level, meaning that they know and empathize with the other 
person’s thoughts, emotions, interests, needs, and actions 
[HHI: [57]]. Recalling previously disclosed information and 
tailoring the interaction accordingly signals to a child that 
he/she is being heard and understood by the robot [12, 59].

The robot math tutor in the present study is designed to 
apply the memory-based personalization strategy of Ligth-
art et al. [12]. This strategy has shown to foster child-robot 
relationships through both routine (i.e., using the child’s 
name and a personal greeting) and strategic (i.e., referring 
to previously shared things and selecting content based on 
stored interests and preferences) personalization behaviors 
[12, 59]. Research indicates that initial interactions play 
a crucial role in shaping engagement and cooperation in 
human-robot interactions. Specifically, Erel et al. [60] found 
that positive opening encounters, such as appropriated ges-
tures, enhance the willingness to engage with the robot, 
while Fischer et al. [61] demonstrated that verbal greetings 

3 × 4 (small sum), then multiply the answer with 100 to get 
3 × 400. It is especially important that children understand 
and internalize the steps (rather than simple automatiza-
tion), as they are applicable in a wide variety of realistic 
situations [43, 44].

The robot math tutor in the present study is designed to 
apply progressive schematization. Guidance is automati-
cally provided by the robot after children answer incorrectly 
and when a new type of problem (that might need a new 
approach) is introduced. The robot uses various guidance 
strategies (e.g., small sum, support sum, double). It goes 
through the informal strategy that children could use to solve 
the sum, without providing the answer, helping them create 
their own math models. More details on the guidance strate-
gies and design of the robot are provided in the method and 
in [48]. Because progressive schematization has been shown 
to improve children’s math performance in both human [47] 
and computer [46] tutoring settings, we hypothesize that 
after 4 child-robot interactions, scaffolding will increase 
children’s math performance, meaning they will give more 
correct answers (H1a), respond faster (H1b), and increase 
in math level (H1c) (see Fig. 1a). By providing guidance, 
a robot demonstrates its ability to empathize with a child’s 
learning needs as a human tutor would, thereby increasing 
its social presence [49]. However, it is required that chil-
dren experience the support multiple times and perceive the 
support as helpful [HRI: [49], HHI: [50]]. Children with a 
lower need for guidance are unlikely to experience much of 
the robot’s scaffolding skills, and are more likely to consider 
the scaffolds redundant [41] or not notice them as an aid. 
Therefore, we hypothesize that scaffolding will increase the 
robot’s social presence (H2), but that this impact of scaf-
folding on social presence is mediated by children’s aware-
ness of being helped by the robot (H3) (see Fig. 1a).

2.2.2  Personalization

The general assumption in education is that a good tutor 
provides personalized education, even though it is not 
clearly defined what personalization is [HHI: [51]]. Stu-
dents perceive education personalized when a tutor is acces-
sible (e.g., socializes, talks about non-professional issues), 
interpersonal competent (e.g., knows student name, is a 
skilled communicator, promotes teacher-student equal-
ity and friendship), and personalizes the course-related 
practices (e.g., designs course activities/content based on 
student’s interests) [51]. These dimensions of personaliza-
tion align with what Davison et al. [8] refer to as relational 
interactions within educational environments. A healthy, 
pleasant working relationship requires the ‘allies in learn-
ing’ to know each other’s interests and skills, interact and 
understand each other on a personal level, and maintain 
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in gender, age and math level. In the scaffolding (S) con-
dition the robot offered guidance after an incorrect answer 
and when a new type of sum was introduced. In the non-
scaffolding (NS) condition the robot moved on to the next 
problem without guidance. In the personalization (P) condi-
tion the robot used the preferences and interests shared by 
the child to make the interaction feel personal and to tailor 
the content of the math stories to children’s interests. In 
the non-personalization (NP) condition the interaction was 
not personal and the robot used math stories with a random 
topic and fixed content. After 4 complete interactions the 
distribution per condition was: S-P (n = 30), NS-P (n = 25), 
S-NP (n = 30), NS-NP (n = 28).

3.3  Procedure and Robot Specifications

Pairs of researchers conducted the study in parallel at multi-
ple locations. The researchers were trained prior to the study 
and followed a procedure manual during the experiments to 
minimize differences between the groups. The experimental 
sessions took place in two quiet rooms in the school during 
normal school days: in one room the child-robot interaction 
took place, in the other room children filled in the survey 
while being assisted by a researcher unaware of the child’s 
experimental condition. In total, children participated in 4 
sessions: 3 sessions on separate days within one week in 
May or June 2022, and one final session in February or 
March 2023. During all these sessions, children remained 
in the same experimental condition. The first three sessions 
allowed us to examine short-term learning effects (which we 
published in [64]). However, long-term engagement with 
tutor robots remains a challenge in educational settings, as 
children’s motivation can decrease once the novelty effect 
fades [12, 33]. To explore how the child-robot relation-
ship and math learning develop after a prolonged break, we 
included a fourth session approximately nine months later. 
This break reflects real-life classroom challenges, such as 
holidays or inconsistent robot use by teaching staff [65].

The children came to the rooms one by one, starting with 
a math session with the robot. A 57 cm tall V6 Nao (human-
oid) robot was placed on the ground. On one side a 9.9 inch 
Lenova Tab4 10 tablet was placed in a tablet stand. The tab-
let visually displayed the sums and could be used by the 
children as fallback for when the robot could not hear or 
understand them. On the other side was a BRÄDA lap table 
with paper and pencil which children could use for calcula-
tions. A rug was placed in front of the robot to seat the par-
ticipants. The robot operated autonomously and was started 
from a laptop by a researcher. The researcher remained in 
the room and was positioned far behind the child to avoid 
unnecessary contact. The researcher only intervened in the 

increase attention and perceived friendliness, which help 
establish social presence and facilitate interaction. In line 
with these findings, our robot gathers personal information 
from the child during chitchat conversations (e.g., interests, 
hobbies, preferred handshake), which it later uses to person-
alize greetings and tailor math stories. More details on this 
memory-based personalization strategy are provided in the 
method and in [48].

Because personalization has been shown to improve 
children’s learning performance in both human [51, 62] 
and robot [63] tutoring settings, we hypothesize that after 4 
child-robot interactions, personalization will increase chil-
dren’s math performance, meaning they will give more cor-
rect answers (H4a), respond faster (H4b), and increase in 
math level (H4c) (see Fig. 1b). We also hypothesize that 
personalization will increase the robot’s social presence 
(H5) and feelings of friendship for the robot (H6). However, 
the personalization skills of a robot need to be salient and 
unambiguous enough for a child to notice them [25]. From 
this perspective, we hypothesize that the impact of person-
alization on social presence (H7) and feelings of friendship 
(H8) will be mediated by children’s awareness that the robot 
referred to things previously shared by them (a). Further-
more, from the perspective of interpersonal need fulfillment, 
the impact is also anticipated to be mediated by children’s 
perception that the robot recognized them (b), and percep-
tion that the robot understood them (c) (see Fig. 1b).

3  Method

3.1  Participants

113 children aged 9–12 years (49% boys, 51% girls) com-
pleted the experiment. The participants, all from grade 7, 
were recruited from six different primary schools, situated 
in both urban and suburban districts of the Netherlands. The 
respective teachers provided a centralized national math 
level, ranging from E (lowest) to A (highest), for each child. 
Most children had the highest math levels A-B (49%), while 
around 23% had an average C-level, and 28% the lowest 
D-E levels. Parents signed an informed consent form before 
participating. The study was approved by the ethical com-
mittee of the Amsterdam University of Applied Sciences 
(ref. number: 2022–054032).

3.2  Experimental Design

The study had a 2 (scaffolding: without vs. with) x 2 (per-
sonalization: without vs. with) between-subjects design. 
Participants were randomly assigned to one of the 4 con-
ditions. Matching procedures were used to ensure balance 
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an incorrect answer or introduced a new sum. Each robot-
interaction session took approximately 15 min. See also 
[48] for all robot design specifications.

At the end of the fourth robot math session, children were 
escorted to the other room to fill in the survey. They were 
seated behind a laptop to fill in a digital Qualtrics question-
naire. It started with an instruction video and a practice ques-
tion. The researcher emphasized that there were no right or 
wrong answers and that their own opinion was valued the 
most. Children could then fill in the complete 37-item ques-
tionnaire, each question displayed separately on the screen 
together with a 4-point Likert scale. The survey was adapted 
for this age group by using concrete questions, omitting the 
neutral response category, and by avoiding complex word-
ing, indirect questions and negations [66]. To aid children 
with reading problems, each question was also accompanied 
with a prerecorded video in which the question and answer 
options were read out loud. The researcher remained in the 
room but did not intervene, unless the child needed explana-
tion. The researcher did register any verbal comments made 
by children when filling in the survey. The survey took 
10–15 min.

3.4  Measures

3.4.1  Biographical Information

The teachers provided the age, gender, and general math 
level for each child.

3.4.2  Math Performance

Three variables measured children’s math performance 
during the fourth robot math session (see frequencies and 
results regarding the first three sessions in our previous pub-
lication [64]). First, the ratio of correct answers was calcu-
lated for each child based on the number of correct answers 
(during the first answer attempt) and the total number of 
sums logged by the system (M = 0.71, SD = 0.19, range 
= [0.20, 1.00]). Second, a child’s average response time in 
seconds was calculated (M = 51.26, SD = 16.65, range = 
[20.00, 99.25]). And third, a child’s math level difference 
was calculated based on the difference between their start-
ing level and ending level (M = 0.68, SD = 1.97, range = 
[-5, 5]).

3.4.3  Robot Perception

Originally two variables measured the robot’s social percep-
tion: social presence and feelings of friendship. The social 
presence scale was formed using various adapted items 
from [31, 67], and [68]. The feelings of friendship scale was 

event of a system crash. In that case, a reboot was performed, 
after which the child could continue where it left off.

At the start of the robot math session, children received 
general instructions about the study and the robot, and were 
reminded that they could stop at any moment without rea-
sons or consequences. Each session consisted of 4 blocks: 
introduction/greeting, chitchat, math, goodbye. The differ-
ences between the sessions are shown in Table 1. Specifi-
cally, the first session started with a short getting acquainted 
introduction, where names were exchanged and the robot 
introduced its goals. This was followed by a how-to-talk-
to-me tutorial, where the robot and child practiced with the 
mechanics of the speech recognition, using the tablet as fall-
back, and solving a math problem. This was the same in 
all conditions. The second, third and fourth sessions started 
with a greeting where the robot said “Hi [name], nice to see 
you again” either with (P) or without (NP) the child’s name 
inserted, followed by either a generic wave (NP) or the per-
sonalized secret handshake that children co-created with 
the robot during the first session (P). After this introduc-
tion, all the sessions continued with a chitchat conversation 
between the child and robot, followed by the math conver-
sation. During each math dialog, the robot presented a math 
problem in story form. The math conversation consisted of 
a prespecified amount of math dialogs with either a random 
topic (NP) or a topic that matched with the child’s (from the 
chitchat conversations) collected interests (P). For exam-
ple, “Let’s talk about your favorite animal, [lions]” versus 
“Let’s talk about the amazing animal, otters”. The robot 
transformed the problem to the A x B format verbally and 
visually on the tablet. Nineteen different difficulty levels of 
multiplication sums were defined. To facilitate children with 
an experience of success, each child started with a low dif-
ficulty level in the first session, which changed during all the 
sessions based on children’s performance. The system was 
programmed in a way that the difficulty level was gradually 
increased when children performed well and fast decreased 
when they performed poorly. In case children did not know 
the answer, the robot gave them guidance (S) or moved on 
to the next problem (NS). An example of guidance is the 
small sum strategy given in 2.2.1 (a detailed script of all 
guidance strategies is provided in the supplemental materi-
als of [64]). This guidance was the same whether it followed 

Table 1  Robot interaction blocks per session
Session 1 Session 2 Session 3 Session 4
Introduction & tutorial Greeting

(P vs. NP)
Greeting
(P vs. NP)

Greeting
(P vs. NP)

Chitchat Chitchat Chitchat Chitchat
Math
(P vs. NP)
(S vs. NS)

Math
(P vs. NP)
(S vs. NS)

Math
(P vs. NP)
(S vs. NS)

Math
(P vs. NP)
(S vs. NS)

Chitchat & goodbye (incl. 
co-creation handshake)

Chitchat & 
goodbye

Big goodbye Big 
goodbye
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3.4.5  Covariates

Correlation analyses were performed to investigate whether 
the dependent variables significantly related to a child’s 
gender, age, math level, math motivation, total number of 
math problems, total number of correct answers, and high-
est / average / last math level reached. Math motivation was 
measured at the end of the online survey using the Math-
ematics Motivation Questionnaire for Children (MMQC) 
of [70, 71]. Only the subscales Task Value (6 items, e.g. 
“Do you like math?”; α = 0.91) and Perceived Competence 
(6 items, e.g. “Are you good at math?”; α = 0.85) were 
included in the study.

The following covariates were identified for specific 
dependent variables (p-values ranging from .046 to < .001) 
and will be included in the analyses: average response time: 
math level (r = .41), math motivation Perceived Compe-
tence (r = .25), total number of math problems (r = − .44), 
total number of correct answers (r = − .36); math level differ-
ence: math level (r = − .10), total number of math problems 
(r = .31), total number of correct answers (r = .55); social 
presence: gender (r = .28), math level (r = − .21); parasocial 
interaction: gender (r = .29), math level (r = − .32); trust: 
math level (r = − .29).

3.4.6  Technical and Design Checks

To ensure the robot functioned correctly and the math stories 
were engaging and appropriately tailored to the children, 
participants answered four single-item questions. These 
questions assessed whether they could hear the robot well, 
understood what the robot said, felt that the robot matched 
the sums to their math level, and whether they found the 
math stories interesting. The answer options ranged from (1) 
no, definitely not, to (4) yes, definitely so. The frequencies 
of these responses are reported under 4.1 (Descriptives).

4  Results

4.1  Descriptives

Overall, the robot performed good: children could hear the 
robot well (M = 3.48, SD = 0.66), could understand what 
the robot said (M = 3.58, SD = 0.56), and felt that the robot 
matched the math level of the sums to their personal math 
level (M = 3.32, SD = 0.72). Furthermore, the math stories 
were found interesting (M = 3.45, SD = 0.61), particularly 
among children with a lower math level (r = − .21, p = .023).

formed using various adapted parasocial interaction, close-
ness and trust items from [69] and [26]. The answer options 
ranged from (1) no, definitely not, to (4) yes, definitely so. 
A principle components analysis discovered three distinct 
factors: in addition to social presence, feelings of friend-
ship split into two factors which we referred to as paraso-
cial interaction (e.g., “Would you like to see the robot more 
often?”) and trust (e.g., “Do you think the robot can keep 
one of your secrets?”). The term parasocial interaction was 
chosen for the first set of items, because they correspond 
to a one-sided perceived friendship characterized by feel-
ing comfortable around the nonhuman entity, looking for-
ward to seeing/meeting it, and having the desire for repeated 
interactions [32]. The final scale items are presented under 
Appendix A.

Of the original 7-item social presence scale, 2 items were 
removed (SP2,5) because they loaded on a different (fourth) 
factor. Observations during survey administration indicated 
that some children did not grasp the ‘living creature’ concept 
(SP5) and/or suddenly shifted their robot perception from 
a somewhat human-like entity to a mechanical tool “with 
a camera” when asked if the robot could see them (SP2). 
The question whether the robot could be a playfellow (SP6) 
turned out to be a measurement of parasocial interaction. 
The 4 other scale items (SP1,3,4,7) were averaged to cre-
ate a single measure of social presence (α = 0.72, M = 2.94, 
SD = 0.59).

Of the original 10-item feelings of friendship scale, 3 
items measured trust and 7 items measured parasocial 
interaction. These groups of items were averaged to create a 
single measure of trust (F8-10: α = 0.75, M = 3.47, SD = 0.59) 
and parasocial interaction, the latter also including item 
SP6 from the social presence scale (F1-7, SP6: α = 0.88, 
M = 3.46, SD = 0.46). A scan for outliers indicated that 3 
children scored very negative on the parasocial interaction 
scale compared to other children. Only in analyses with this 
scale were these children removed from the analyses.

3.4.4  Mediators

Four potential meditators were measured with single items. 
Children had to indicate whether the robot helped them 
with difficult or new sums (awareness of being helped by 
robot: M = 3.00, SD = 0.94), whether the robot used things 
they said during chatting to create a math story (awareness 
that robot referred to shared things: M = 3.08, SD = 0.85), 
whether the robot recognized them from last time (percep-
tion of being recognized by robot: M = 3.31, SD = 0.87), and 
whether the robot could understand them well (perception 
of being understood by robot: M = 2.94, SD = 0.67). The 
answer options ranged from (1) no, definitely not, to (4) yes, 
definitely so.
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(M = 3.59, SD = 0.05) than children in the non-personalized 
(NP) condition (M = 3.42, SD = 0.48). No main effects were 
found on social presence and trust, nor for scaffolding on 
social presence. Additionally, no interaction effects between 
scaffolding and personalization were found.

4.4  Indirect Effects of Scaffolding and 
Personalization on Robot Perception

To explain the impact of personalization on parasocial inter-
action (H8-PI-a-b-c), three mediation analyses were per-
formed (model 4, 5000 bootstrap samples) in PROCESS 
(Version 4.2) [72]. As anticipated (see Fig. 2a), children 
in the personalized condition more often indicated that the 
robot referred to things previously shared by them (a = 0.95, 
SE = 0.14) and, in turn, parasocially interacted more with 
the robot (b = 0.10, SE = 0.05), B = 0.09 SE = 0.05, 95% 
CI = [0.005, 0.189]. Children in the personalized condition 
also more often thought that the robot understood them (a 
= 0.28, SE = 0.13) which, in turn, lead to more parasocial 
interaction with the robot (b = 0.12, SE = 0.05), B = 0.03 
SE = 0.02, 95% CI = [0.007, 0.086] (see Fig. 2b). However, 
children’s perception that the robot recognized them from 
last time did not explain the impact of personalization on 
parasocial interaction. No indirect effects were found for 
the impact of personalization on trust (H8-Trust-a-b-c) and 
social presence (H7a-b-c).

Although scaffolding had no direct effect on social pres-
ence, the effect could be completely indirect (as explained 
in [72]). For this reason, another mediation analysis (model 
4, 5000 bootstrap samples) was performed to investigate 
whether children needed to be aware of the robot helping 
them in order for them to perceive the robot as socially pres-
ent (H3). As anticipated (see Fig. 3a), children receiving 

4.2  Direct Effects of Scaffolding and Personalization 
on Math Performance

To investigate whether scaffolding (H1) and personalization 
(H4) increased children’s math performance, three analyses 
of covariance (ANCOVAs) were performed with scaffolding 
and personalization as between-subject factors, and either 
(a) ratio of correct answers, (b) average response time or (c) 
math level difference as dependent variable. Each analysis 
included their own identified covariates (see Method). As 
anticipated, children receiving guidance from the robot (S) 
responded faster to the math problems (M = 48 s, SD = 1.91) 
than children who did not receive guidance (NS) (M = 55 s, 
SD = 2.08), F(1,105) = 5.472, p = .02. Children receiving 
guidance from the robot (S) also increased in math level 
(M = 1.59, SD = 1.94), while children not receiving guidance 
(NS) actually decreased in math level (M = − 0.36, SD = 0.21), 
F(1,106) = 37.393, p < .001. No main effects were found for 
scaffolding on correct answers, nor for personalization on 
all math performance measures. Additionally, no interaction 
effects between scaffolding and personalization were found.

4.3  Direct Effects of Scaffolding and Personalization 
on Robot Perception

To investigate whether scaffolding (H2) and personaliza-
tion (H5-6) increased the robot’s social perception, three 
analyses of covariance were performed with scaffolding 
and personalization as between-subject factors, and either 
social presence, parasocial interaction or trust as dependent 
variable, each with their own identified covariates. The 
analyses only yielded one main effect for personalization, 
F(1,104) = 5.676, p = .02, with children in the personalized 
condition (P) parasocially interacting more with the robot 

Fig. 2  Mediation models for the 
effect of personalization on para-
social interaction via children’s 
awareness that the robot referred 
to things previously shared by 
them (a: upper model) and via 
perception that the robot under-
stood them (b: lower model); 
*p < .05, **p < .01, ***p < .001, 
ns = nonsignificant
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did not affect the correctness of children’s answers. This is 
most likely an effect of our design. To make a fair com-
parison, the rate of correct answers in all conditions is based 
on the first answer attempt. However, in the scaffolding 
condition, children received a second attempt, which could 
have influenced learning outcomes. Research suggests that 
repeated attempts can enhance learning by reinforcing 
memory retrieval and providing additional opportunities for 
practice and self-correction [73, 74]. Thus, the increase in 
math level in the scaffolding condition may partially stem 
from the fact that children had an extra opportunity to arrive 
at the correct answer. While this design choice aligns with 
real-world educational scaffolding, where learners often 
receive guided support, it also introduces a potential con-
found that should be considered in future research.

Furthermore, we found that between 10 and 25% of the 
incorrect answers were actually robot errors: the child gave 
the correct answer, but the robot did not recognize it cor-
rectly. In many cases, the child did not correct the robot, 
meaning that the robot processed it as an incorrect answer. 
In the scaffolding condition, children used the second 
chance as an opportunity to correct the robot, increasing the 
difference between both conditions even more. Thus, while 
the robot tutor in our study primarily improved children’s 
response time, the additional attempt in the scaffolding con-
dition likely contributed to the observed math level increase. 
Future studies should consider isolating the effects of scaf-
folding from the effects of repeated attempts to disentangle 
their individual contributions to learning.

Although log checks showed that the robot speech-rec-
ognition errors happened just as often in every condition, 
recent work suggests that children are more forgiving of 
a robot’s mistakes when it first builds a warm, personal-
ized bond [75, 76]. In our study, the personalization and 

guidance from the robot more often indicated that the robot 
helped them with difficult or new sums (a = 0.92, SE = 0.15) 
and, in turn, perceived the robot as more socially present (b 
= 0.20, SE = 0.06), B = 0.18, SE = 0.07, 95% CI = [0.052, 
0.336]. This mediated path was extended with parasocial 
interaction as dependent variable to investigate whether 
social presence increases children’s feelings of friendship 
with the robot (RQ1). A serial mediation analysis (model 6, 
5000 bootstrap samples) indicated that this indirect effect of 
scaffolding on parasocial interaction via children’s aware-
ness of being helped by the robot and social presence was 
indeed significant: B = 0.05, SE = 0.02, 95% CI = [0.007, 
0.097] (see Fig. 3b).

5  Conclusions and Discussion

The aim of this study was to investigate the impact of a 
robot tutor’s social interaction skills on children’s math 
performance and robot perception after 4 child-robot inter-
actions. By using a recurring interactions experimental 
design, we disentangled the effect of two specific social 
skills: scaffolding the explanations to children’s evolving 
math performances (by use of progressive schematization), 
and personalizing the math conversations to children’s 
preferences and interests (by use of the memory-based 
personalization strategy). We also specifically investigated 
the underlying psychological mechanisms that explain the 
impact of these robot’s social skills. See Table 2 for a sum-
mary of all the results.

Regarding the robot social skill scaffolding, the results 
indicated that children receiving guidance from the robot 
responded faster and increased in math level compared to 
children who did not receive guidance. However, scaffolding 

Fig. 3  Mediation models for the 
effect of scaffolding on social 
presence via children’s awareness 
of being helped by the robot (a: 
upper model) and for the effect of 
scaffolding on parasocial interac-
tion via awareness of being 
helped and social presence (b: 
lower model)
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perception that the robot is a social entity [41, 49, 50]. In 
our study, scaffolding was operationalized as arithmetic 
explanations provided after an incorrect answer and when a 
new type of sum was introduced, and we captured children’s 
perceived helpfulness via a single-item measure (“the robot 
helped me with difficult or new sums”). We did not directly 
assess whether the amount, timing, or content of explana-
tions optimally matched each child’s moment-to-moment 
expertise or informational needs. Prior work suggests that 
when support is experienced as appropriately targeted and 
non-redundant, a tutor is perceived as more intelligent and 
socially present [49], whereas overly detailed or unneces-
sary explanations can be experienced as mechanical and 
reduce social presence [e.g., [21, 77–80]. This highlights 
the need for more sophisticated robot tutoring systems that 
are not only designed around the robot’s technical capabili-
ties (i.e., a robot-centered perspective) but also prioritize the 
child’s needs (i.e., a child-centered perspective) [81]. Future 
research should therefore examine adaptive scaffolding that 
adjusts in real time, while explicitly measuring scaffolding 
fit (e.g., perceived too much/too little help, relevance, and 
timing) to test when pedagogical support also fosters social 
engagement [81, 82]. By tailoring support to the child’s 
needs, the robot can maintain its role as an engaging and 
intelligent social partner.

scaffolding features may likewise have made some errors 
feel less serious or even more annoying, depending on the 
child. Because we did not track those reactions, we can-
not rule out an undetected influence on learning or robot 
perception‑related measures. Future work should therefore 
log every interactional error, observe children’s responses 
to these errors, and test whether specific social skills (such 
as personalization or scaffolding) can mitigate the impact 
of robot mistakes. Being transparent about these flaws will 
make robot tutor research more realistic and help designers 
build systems that match children’s expectations and error 
forgiveness thresholds.

Importantly, the observed math level decrease in the 
non-scaffolding condition does not imply that robots nega-
tively impact learning but rather highlights the necessity of 
explanatory feedback in educational interactions. This effect 
is commonly observed in human tutoring as well [73, 74], 
where the absence of guidance may lead to reinforcement of 
incorrect strategies, resulting in stagnation or even a decline 
in performance rather than conceptual growth.

Beyond its impact on learning, scaffolding also influ-
enced how children perceived the robot socially, though 
only indirectly. Specifically, when children recognized that 
the robot helped them, scaffolding increased social pres-
ence. This aligns with the argument that children must 
perceive scaffolding as beneficial for it to enhance their 

Table 2  Overview results (see Fig. 1a and b for more details)
Expectations Results Key takeaways
Scaffolding
H1 Direct effect on math performance

• Accepted for: (b) response time, (c) math level
• Rejected for: (a) answer correctness

Scaffolding improves speed and level 
(though this may reflect the second-
attempt design), not accuracy.

H2 Direct effect on robot perception
• Rejected for: social presence

No direct scaffolding effect on the 
robot’s social presence.

H3 Indirect effect on robot perception
• Accepted for social presence via: awareness of being helped by robot

Scaffolding raises the robot’s social 
presence only when help is noticed.

RQ1 Relationship between social presence and friendship
• Supported for friendship (parasocial interaction) via: awareness of being 
helped by robot

Social presence predicts parasocial 
friendship with the robot, especially 
when scaffolding is noticed as helpful.

Personalization
H4 Direct effect on math performance

• Rejected for all (a, b, c)
Personalization does not improve 
math performance (accuracy, speed, 
or level).

H5-H6 Direct effect on robot perception
• Accepted for: friendship (parasocial interaction)
• Rejected for: social presence

Personalization increases parasocial 
friendship with the robot, not the 
robot’s social presence.

H7-8 Indirect effect on robot perception
• Accepted for friendship (parasocial interaction) via: (a) awareness that robot 
referred to shared things, (c) perception of being understood by robot
• Rejected for friendship (parasocial interaction) via: (b) perception of being 
recognized by robot
• Rejected for social presence via: all (a, b, c)

Parasocial friendship with the robot 
increases when personalization is 
noticed and conveys understanding, 
not via perceived recognition.

RQ1 Relationship between social presence and friendship
• Not supported

Social presence does not explain 
personalization-driven friendship 
effects.
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is a well-established strategy for enhancing children’s 
motivation, engagement, and concentration, leading to 
better academic performance [86, 87]. Since all children 
were exposed to the humorous stories, this strategy may 
have already optimized their interest, potentially masking 
any additional effect of personalization. Notably, the only 
study to our knowledge that demonstrated a positive effect 
of memory-based personalization by robots on children’s 
learning performance did not incorporate humor or enter-
tainment elements in its design [63]. Future research should 
therefore disentangle the individual effects of personaliza-
tion from those of entertainment education.

As anticipated, personalization did increase children’s 
feelings of friendship as indicated by higher parasocial 
interaction. First, we found evidence for how this design 
element functions: children’s awareness that the robot 
referred to things they had previously shared mediated this 
effect. Alongside our finding that children needed to rec-
ognize the robot’s scaffolding, this supports Van Straten 
et al.‘s [25] argument that a robot’s social skills must be 
salient and unambiguous enough for children to notice and 
be influenced by them. Second, personalization fulfilled 
children’s interpersonal need to be understood. Specifically, 
memory-based personalization increased children’s per-
ception that the robot understood them on a personal level 
which, in turn, increased their parasocial interaction with 
the robot. This finding aligns with previous research [12, 
57, 59], suggesting that recalling disclosed information and 
tailoring interactions accordingly signals to children that 
they are being heard and that the robot empathizes with their 
preferences and interests. Since feeling understood is a core 
aspect of close friendships [57], this highlights the potential 
of personalization in fostering social bonds between chil-
dren and robots.

Unfortunately, the impact of personalization on paraso-
cial interaction was not mediated by children’s perception 
that the robot recognized them from last time. However, we 
cannot rule out the possibility that personalization fulfilled 
children’s interpersonal need to be recognized. Our results 
showed positive correlations between personalization, the 
perception of being recognized, and parasocial interaction. 
We suspect the indirect effect was weakened because some 
children in the non-personalized condition mentioned dur-
ing survey administration that the robot recognized them 
because it said “nice to see you again”. Presumably, without 
using a child’s name or other personal references, a simple 
polite greeting with the word ‘again’ can already be inter-
preted as a sign of recognition. These findings raise three 
key questions for future research:

• whether a single-item recognition question adequately 
captures children’s full experience,

Interestingly, social presence increased children’s feel-
ings of friendship for the robot, as indicated by higher 
parasocial interaction. This supports the theory that when 
the robot is perceived as a social being, it becomes more 
suitable for relationship formation, and children are more 
willing to initiate a friendship with it [14, 23, 25]. This is a 
first step in understanding how children’s internal states are 
interconnected and what processes underlie the impact of 
robots. Nevertheless, these two robot perception responses 
are not always expected to be related [14]. For instance, in 
the current study, social presence was an important precur-
sor to friendship when scaffolding was used, but not when 
personalization was used. One possible explanation is that 
scaffolding behaviors are experienced as a supportive act by 
the robot. Some children appreciate this support more than 
others, for example, because they need it more or because 
they are naturally more appreciative. It is this level of per-
ceived relevance and appreciation that could determine 
how socially meaningful the supportive act is, resulting in 
different social presence scores and, in turn, stronger feel-
ings of friendship. This would align with the broader idea 
that children’s pre-existing robot attitudes (e.g., its personal 
worth, alignment with personal goals) play an important 
role in child-robot relationships [83, 84]. Additionally, 
this finding supports the ‘Relevant Needs’ proposition of 
Konijn et al. [85], which suggests that children are more 
likely to form bonds with artificial others when the interac-
tion serves their needs. According to this theory, an affec-
tive bond emerges when a social entity – such as a robot 
– responds to an individual’s goals, desires, or tasks in a way 
that is subjectively significant. Our results provide empiri-
cal support for this theoretical proposition by demonstrating 
that scaffolding fosters social presence and friendship only 
when it is perceived as relevant to the child. This highlights 
the importance of designing robot interactions that are not 
just socially engaging but also meaningfully aligned with 
children’s individual needs and learning contexts. Further 
research is needed to determine under which circumstances 
social presence is a key precursor to friendship and how 
adaptive scaffolding can optimize child-robot relationships.

Regarding the other robot social skill, results indicated 
that personalization did not increase children’s math 
performance. Human tutoring studies often suggest that 
personalization enhances children’s interest in learning 
materials, which in turn improves learning performance 
[62]. However, in our study, most children found the math 
stories interesting (see 4.1) and frequently mentioned to 
the researchers that they found them funny. This suggests 
that the humor in the math stories may have played a key 
role in capturing their interest. Embedding an educational 
message (mathematics) within an entertaining narrative 
(humorous story), also known as ‘entertainment education’, 
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should be designed to be salient and meaningful, as chil-
dren must recognize and appreciate the robot’s tailored 
responses for personalization to foster social bonds. Third, 
robots should employ strategies that enhance social pres-
ence, as children are more likely to form connections with 
robots they perceive as socially engaging and helpful. This 
includes not only dynamic social interactions but also 
mechanisms that signal understanding and potentially rec-
ognition. Finally, educational robots should be designed 
with ethical considerations in mind, balancing engagement 
with safeguards that prevent overtrust or emotional over-
reliance. Future research should continue refining these ele-
ments to optimize both learning and social engagement in 
child-robot interactions.
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with all sorts of animate and inanimate objects, including 
intelligent characters [27, 30, 34]. Yet many child-robot 
studies have focused on trust as the dominant measure of 
relationships, even though its effects are more inconsistent 
[25]. Trust is defined and measured in many ways [89], 
and it is unknown whether it is essential to all nonhuman 
friendships or rather context depended. In the present study, 
a higher level of social trust was measured even though our 
robot did not share sensitive information or keep secrets. 
Perhaps lower levels of social trust (e.g., trusting the robot 
to treat answers with respect) as well as aspects of compe-
tency trust (e.g., trusting the robot’s feedback) did play a 
role in our robot math tutor setting.

While social bonds with robots are well-documented in 
child-robot interaction research [5, 17], the ethical implica-
tions of these relationships remain complex [17]. In edu-
cational settings, such bonds may foster engagement and 
learning, but in other contexts, they could raise concerns 
about overtrust and emotional dependency [17]. Future 
studies should explore in which contexts social connections 
with robots are beneficial to children and where they might 
introduce risks. This challenge is further underscored by 
the difficulty of measuring trust in socially assistive robots, 
as perspectives and expectations vary across stakeholders, 
interactions evolve over time, and learning environments are 
often dynamic and unstructured [90]. Developing nuanced 
frameworks for assessing trust and parasocial bonds will 
be critical in advancing ethical and effective child-robot 
interactions.

In light of our findings, we propose several key design 
recommendations for educational robots. First, scaffolding 
should be adaptive to a child’s evolving skill level, ensur-
ing that feedback remains relevant and beneficial without 
becoming redundant or frustrating. Second, personalization 
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