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Abstract

Robot tutors can add value in education, but their impact usually differs depending on their social interaction skills. This
study disentangled the effect of two specific robot social interaction skills on children’s math performance and their social
perception of the robot. The first is to scaffold the explanations to children’s evolving math, and the second to personalize
the math conversations to children’s preferences and interests. In a 2 (scaffolding: without vs. with) x 2 (personalization:
without vs. with) between-subjects design, 113 children (9-12 years) were randomly assigned to one of the four condi-
tions. Findings after 4 child-robot interactions showed that scaffolding improved children’s response time but not the cor-
rectness of their answers, while personalization increased relationship formation. Examination of the underlying explain-
ing mechanisms revealed that both social skills must be salient enough to have the indented effect, that personalization
satisfies children’s need to be understood, and that social presence influences feelings of friendship.
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Being proficient in math is important for everyday life and
for future careers [2, 3]. Yet many children underperform
in math, possibly due to low interest, negative attitudes and
sometimes even anxiety [2, 3]. At the same time staff short-
ages, overcrowded classrooms, and increased demand for
special education decrease the time teachers have to address
these issues [4, 5]. UNESCO estimates that an additional
24.5 million teachers are needed in primary education
worldwide to achieve universal basic education by 2030,
and calls for unique classroom innovations [6]. Most poten-
tial are technical solutions that can mimic human interac-
tions, such as social robots [4, 5]. According to Vygotsky,
social interaction plays a fundamental role in learning. It is
often under the guidance and encouragement of knowledge-
able tutors that children progress from a level where they
can comfortably solve problems independently to a more
challenging level. Through collaborative dialogues, children
seek to understand the tutor’s instructions, then internalize
it and use this information in similar future occasions [7, 8].
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While the use of social robots has shown to result in learn-
ing outcomes similar to those of human tutoring, choosing
the appropriate social interaction skills that enhance chil-
dren’s learning remains challenging, and the skills should be
carefully designed for the specific task at hand [5].

There are numerous ways in which robot interactions can
contribute to a child’s learning. Davidson et al. [8] grouped
the social interactions (and their related social skills) that
take place in educational environments into three cat-
egories: educational interactions (focused on helping and
explaining), collaborational interactions (focused on align-
ment), and relational interactions (focused on bonding).
For the development of a social robot math tutor, the pres-
ent study focused on educational and relational interaction
skills. This focus was informed by our initial focus groups
with teachers and students, who helped to identify key
design elements for social robots to support mathematics
education in primary school classrooms [9]. First, the focus
groups indicated that for a robot math tutor to be helpful,
it is required to give step-by-step instructions and explana-
tions, adapted to the child’s math level [9]. The educational
interaction skill here is scaffolding. Second, to make math
fun, the robot tutor is also required to have prior knowledge
of the child (e.g., name, preferences, interests) and to adapt
the math activities to this information accordingly [9]. This
requires the robot to get to know the child through small
talk and to use this information to create pleasant, engaging
and friendly interactions [8]. The relational interaction skill
here is personalization.

Adaptivity through scaffolding and personalization is
particularly important for long-term child-robot interac-
tions. Because learning takes time [10], robot math tutors
need to remain compelling over a long period to help chil-
dren progress to higher math levels [11]. It requires the robot
to remain meaningfully relevant by scaffolding the explana-
tions and instructions to a child’s evolving learning abilities
(Zone of Proximal Development [7]), and to remain socially
relevant as an interesting and safe learning partner by per-
sonalizing the conversations with both familiar and novel
aspects [8, 12]. These type of interaction skills have shown
to foster child-robot relationships, which in turn increased
children’s willingness to continue the interactions [8, 12,
13]. Thus, while the impact of robot tutors’ social skills on
children’s learning gains is essential to warrant its value in
educational environments, their impact on children’s social
perception of the robot (and thus whether it is a compelling
long-term learning partner) is essential for the sustainability
of robots in educational environments.

For this reason, the aim of the present study was to inves-
tigate the impact of a robot math tutor’s social interaction
skills (i.e., scaffolding and personalization) on both chil-
dren’s math performance and their robot perception after
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4 interactions with the robot over an 8-9-month interval.
The study also investigated the underlying psychological
mechanisms that could explain this impact. Figure la and
b provide a summary of all the independent, mediator, and
dependent variables, along with their expected relation-
ships, which will be further explained in the next section.

2 Related Work
2.1 Outcomes of Robot Tutors
2.1.1 Math Performance

Social robots are embodied computers specifically designed
to interact with people in a human-like way [14]. They are
increasingly developed and used for education, mostly in
primary education for language learning and for children
with autism [5, 11, 15]. Often introduced as learning com-
panions, children tend to treat them as social beings and
value them for their physical presence, human-like features
and behaviors, individual attention, patience, and non-
judgmental demeanor [11, 16, 17]. Educational reviews that
examined the learning gains of social robots indicated that
they are particularly effective for tutoring well-defined les-
sons and specific skills, such as mathematics [5].

However, studies on the impact of social robots on
children’s math performance (e.g., math knowledge, test
completion time, response correctness) remain limited, and
their findings are mixed [ 18—22], with some finding positive
effects on math learning outcomes [18] and others negative
or no effects [19-22]. These mixed findings are the result
of studying various aspects of robot-assisted math tutoring.
For instance, Brown and Howard [18] investigated how a
socially interactive humanoid robot engages children in
math education, while Kennedy et al. [19] examined the
negative effects of excessive social behaviors on learning
outcomes. Other studies focused on gender differences in
robot-assisted math learning [20], the role of robot-provided
feedback [21], and how a robot tutor can support basic arith-
metic skills such as times tables [22].

Many of these studies looked at the role of a robot’s social
skills, examining the effects of verbal encouragement [18],
appropriate gestures and gaze [18, 19, 22], personalized
speech [19, 22], and feedback strategies [21]. But because
most either focused on a single social cue or combined mul-
tiple social cues without isolating their individual effects,
it remains unclear how specific social behaviors influence
children’s math learning outcomes, leading to these mixed
findings. To address this gap, this study systematically iso-
lates and analyzes different social skills of a robot math
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tutor, allowing for a clearer understanding of the distinct
impact each skill has on children’s math performance.

2.1.2 Robot Perception: Social Presence and Friendship

While the overall learning gain of robots is well-docu-
mented in several reviews [e.g., [5, 13, 15, 16], the literature
on children’s social perception of robots is more scattered
due to its broader context and less-defined multidimensional
meaning. A majority of these studies looked at precursors
of relationship formation that measure whether children
perceive the robot suited for relationship formation [23].
They are indications of children’s willingness to initiate a
robot relationship, such as physical attraction, similarity,

math .
conversations to Robot Perception:
A that robot H7 -
children’s (a) Awareness that robo Social presence
preferences and referred to shared
interests stored in H7/H8 > (b) Itjhelnr']cgespt'on of being
robot’s memo ! !
) recognized by robot H8
(c) Perception of being RQ1
understood by robot
Robot Perception:
H6 N Friendship

reciprocal liking, anthropomorphism, and social presence
[23-25]. Other studies have focused more on the relation-
ship itself and looked at factors that measure whether chil-
dren perceive the robot as someone they have formed a
relationship with, such as a friend or companion [23, 26].
Indications of a child-robot relationship are usually derived
from human relationship characteristics such as feelings of
connectedness, intimacy, reliance on another, attachment,
and a desire for continued interactions [23, 25, 27, 28]. The
present study focuses on social presence (as precursor) and
friendship (as relationship).

Social presence is the perception that the other entity tak-
ing part in the interaction is a social being, thereby disre-
garding its artificiality [29]. This perception is crucial for
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experiencing true ‘social’ interactions with a robot [29]. In
learning contexts, social presence has shown to foster posi-
tive learning experiences and improved learning by increas-
ing children’s interest in the learning material, compliance,
and persistent motivation [HRI: [17], media characters:
[30]]. More importantly, social presence has shown to elicit
social responses toward the robot that indicate that the robot
was treated more as an embodied social actor rather than
a mere machine [29-31]. It is these social responses that
potentially stimulate feelings of connectedness and relation-
ship formation with the robot [17].

Friendship was selected to define the relationship chil-
dren may form with the robot math tutor, because this term
is widely used in both child-robot interaction and child-
media studies and entails most of the key concepts that
characterize relationships with various nonhuman entities,
such as parasocial interaction, closeness, and trust [HRI:
[26]], media characters: [30, 32]. Research has demon-
strated that children can develop close relationships with
robots, as reflected in friendship feelings, making them
powerful learning tutors [17, 26, 33]. Children usually learn
more from these socially and meaningfully relevant tutors
because they trust information presented by someone they
have bonded with [media characters: [30]]. In addition, rela-
tionships in learning contexts have shown to increase the
motivation to attend to the educational content, foster emo-
tional engagement, and elicit the willingness for ongoing
interactions [media characters: [30], HRI: [33], Al agents:
[34]].

Both social presence and friendship require the robot to
exhibit human-like qualities, including appropriate social
skills that lead to meaningful social interactions [12, 28].
Specifically, the need-to-belonging theory stipulates that
robots must be sufficiently social to satisfy the needs that
children have in repeated social interactions [HRI: [28],
HHI: [35]]. Nonetheless, there is a lack of systematic
knowledge on the kind of social skills a robot should have
in educational settings. In addition, little is known about
the underlying psychological mechanisms that explain the
impact of a robot’s social skills [25]. Therefore, the pres-
ent study investigates the impact of social skills that meet
children’s needs in robot math tutor interactions, while also
uncovering the underlying mechanisms that explain the
impact of these social skills on children’s robot perception.
Finally, although many studies hint on a potential relation-
ship between social presence and friendship (e.g., HRI: [11,
24, 25, 36], media characters: [27]), empirical evidence is
lacking. Presumably social presence is the first-degree social
response that identifies and interprets the social dimensions
of a robot which, in turn, determines the second-degree
response, namely relational feelings for the robot [14, 25].
The present study will therefore explore (RQ1) whether
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perceiving the robot math tutor as socially present will, in
turn, increase children’s feelings of friendship for the robot
(see Fig. la and b).

2.2 Robot Social Interaction Skills
2.2.1 Scaffolding

Scaffolding refers to any kind of guidance that helps children
achieve new skills or levels of understanding they would not
reach on their own [37]. The guidance by the tutor consists of
supporting actions (i.e., scaffolds), such as providing hints,
modelling, highlighting important aspects, or breaking the
task into simpler sub-tasks [37, 38]. In response to a child’s
progressive skill competence, the scaffolds should be gradu-
ally reduced or adapted to move toward skills that should be
acquired next [37]. Although scaffolding differs depending
on the educational content and specific learning needs, robot
studies have provided some general guidelines for the suc-
cessful design of a robot’s scaffolding skills. Insufficient is
to solely adapt the difficulty of the task [39], hint that the
answer is wrong [38] or provide the correct answer [40]. In
educational social interactions, children have a specific need
for content-related feedback, where the robot explains why
the answer is wrong and what the correct way is to approach
the problem [8, 37, 38, 40]. This kind of detailed feedback
helps children to judge the outcome of the tasks, internalize
new information, and avoid making the same mistake next
time [8, 40]. Preferably, the robot automatically recognizes
when a child needs guidance and uses additional physical
tools to visualize the verbal explanations [8].

In the context of mathematics, meta-analyses on the
impact of digital math tools indicated that explanatory feed-
back is indeed more beneficial than corrective feedback
alone [41, 42]. Particularly intelligent tutoring systems
that use adaptivity, scaffolding and feedback seem to cre-
ate strong learning effects [41, 42]. Intelligent agents can
support children’s learning by practicing content knowledge
to foster mathematical principles, while at the same time
providing immediate individual feedback to help discover
new knowledge and avoid typical misconceptions [41].
This type of guidance is in line with the ideology of realistic
mathematics education (RME) that perceives the learner as
areflective practitioner that organically develops models for
mathematical concepts [43, 44]. During learning processes,
children look back on their action and review its outcomes
with the aim to discover new patterns or procedural rules
and to modify future actions [45]. Progressive schematiza-
tion is an RME method whereby a tutor guides the child
through hierarchically ordered steps that help solve the sum
[46, 47]. For instance, the ‘small sum’ guided strategy for 3
% 400 could be: 400 is 100 times bigger than 4, first solve
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3 x 4 (small sum), then multiply the answer with 100 to get
3 x 400. It is especially important that children understand
and internalize the steps (rather than simple automatiza-
tion), as they are applicable in a wide variety of realistic
situations [43, 44].

The robot math tutor in the present study is designed to
apply progressive schematization. Guidance is automati-
cally provided by the robot after children answer incorrectly
and when a new type of problem (that might need a new
approach) is introduced. The robot uses various guidance
strategies (e.g., small sum, support sum, double). It goes
through the informal strategy that children could use to solve
the sum, without providing the answer, helping them create
their own math models. More details on the guidance strate-
gies and design of the robot are provided in the method and
in [48]. Because progressive schematization has been shown
to improve children’s math performance in both human [47]
and computer [46] tutoring settings, we hypothesize that
after 4 child-robot interactions, scaffolding will increase
children’s math performance, meaning they will give more
correct answers (H1a), respond faster (H1b), and increase
in math level (H1c) (see Fig. 1a). By providing guidance,
a robot demonstrates its ability to empathize with a child’s
learning needs as a human tutor would, thereby increasing
its social presence [49]. However, it is required that chil-
dren experience the support multiple times and perceive the
support as helpful [HRI: [49], HHI: [50]]. Children with a
lower need for guidance are unlikely to experience much of
the robot’s scaffolding skills, and are more likely to consider
the scaffolds redundant [41] or not notice them as an aid.
Therefore, we hypothesize that scaffolding will increase the
robot’s social presence (H2), but that this impact of scaf-
folding on social presence is mediated by children’s aware-
ness of being helped by the robot (H3) (see Fig. 1a).

2.2.2 Personalization

The general assumption in education is that a good tutor
provides personalized education, even though it is not
clearly defined what personalization is [HHI: [51]]. Stu-
dents perceive education personalized when a tutor is acces-
sible (e.g., socializes, talks about non-professional issues),
interpersonal competent (e.g., knows student name, is a
skilled communicator, promotes teacher-student equal-
ity and friendship), and personalizes the course-related
practices (e.g., designs course activities/content based on
student’s interests) [51]. These dimensions of personaliza-
tion align with what Davison et al. [8] refer to as relational
interactions within educational environments. A healthy,
pleasant working relationship requires the ‘allies in learn-
ing’ to know each other’s interests and skills, interact and
understand each other on a personal level, and maintain

common ground and a strong bond through mutual shared
experiences [8]. For robots to engage in these type of rela-
tional interactions, they need to simulate having memory by
obtaining, storing and recalling personal information, such
as using the child’s name in greetings, storing the child’s
interests, recalling previously discussed topics, and adapt-
ing behaviors to the child’s needs [HRI: [17, 28], Al agents:
[52]]. The personal information is often naturally obtained
during small talk by asking children direct questions or
eliciting information via self-disclosure [HRI: [12, 53], Al
agents: [52]]. The robot is then programmed to apply this
information with the aim of making child-robot interactions
feel more intimate and substantively engaging for a longer
period of time [12, 28].

Studies have demonstrated that robots applying person-
alization (as in having a persistent memory) are perceived
as more intelligent [53] and treated as an embodied social
actor [12] as if they have a social presence. Children also
feel more close to these type of robots and perceive them
as friends [28, 33, 53, 54]. This could be because persis-
tent memory in robots fulfills children’s interpersonal needs
to be recognized and understood [28]. First, being recog-
nized indicates that the relationship means something and
might go somewhere [28]. Using the child’s name, personal
greetings, and details from previous interactions signal to a
child that he/she is being remembered by the robot [12, 53].
Already after the first interaction children have a tendency
to attribute animistic characteristics to the robot, like hav-
ing a recognition brain, and come to expect robots to rec-
ognize them in future interactions [55, 56]. Second, feeling
understood is a characteristic of intimate friendships, which
becomes increasingly important during middle childhood
[HHI: [57], HRI: [58]]. By self-disclosing personal infor-
mation, friends come to understand each other on a personal
level, meaning that they know and empathize with the other
person’s thoughts, emotions, interests, needs, and actions
[HHI: [57]]. Recalling previously disclosed information and
tailoring the interaction accordingly signals to a child that
he/she is being heard and understood by the robot [12, 59].

The robot math tutor in the present study is designed to
apply the memory-based personalization strategy of Ligth-
art et al. [12]. This strategy has shown to foster child-robot
relationships through both routine (i.e., using the child’s
name and a personal greeting) and strategic (i.e., referring
to previously shared things and selecting content based on
stored interests and preferences) personalization behaviors
[12, 59]. Research indicates that initial interactions play
a crucial role in shaping engagement and cooperation in
human-robot interactions. Specifically, Erel et al. [60] found
that positive opening encounters, such as appropriated ges-
tures, enhance the willingness to engage with the robot,
while Fischer et al. [61] demonstrated that verbal greetings
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increase attention and perceived friendliness, which help
establish social presence and facilitate interaction. In line
with these findings, our robot gathers personal information
from the child during chitchat conversations (e.g., interests,
hobbies, preferred handshake), which it later uses to person-
alize greetings and tailor math stories. More details on this
memory-based personalization strategy are provided in the
method and in [48].

Because personalization has been shown to improve
children’s learning performance in both human [51, 62]
and robot [63] tutoring settings, we hypothesize that after 4
child-robot interactions, personalization will increase chil-
dren’s math performance, meaning they will give more cor-
rect answers (H4a), respond faster (H4b), and increase in
math level (H4c) (see Fig. 1b). We also hypothesize that
personalization will increase the robot’s social presence
(H5) and feelings of friendship for the robot (H6). However,
the personalization skills of a robot need to be salient and
unambiguous enough for a child to notice them [25]. From
this perspective, we hypothesize that the impact of person-
alization on social presence (H7) and feelings of friendship
(H8) will be mediated by children’s awareness that the robot
referred to things previously shared by them (a). Further-
more, from the perspective of interpersonal need fulfillment,
the impact is also anticipated to be mediated by children’s
perception that the robot recognized them (b), and percep-
tion that the robot understood them (c) (see Fig. 1b).

3 Method
3.1 Participants

113 children aged 9-12 years (49% boys, 51% girls) com-
pleted the experiment. The participants, all from grade 7,
were recruited from six different primary schools, situated
in both urban and suburban districts of the Netherlands. The
respective teachers provided a centralized national math
level, ranging from E (lowest) to A (highest), for each child.
Most children had the highest math levels A-B (49%), while
around 23% had an average C-level, and 28% the lowest
D-E levels. Parents signed an informed consent form before
participating. The study was approved by the ethical com-
mittee of the Amsterdam University of Applied Sciences
(ref. number: 2022-054032).

3.2 Experimental Design
The study had a 2 (scaffolding: without vs. with) x 2 (per-
sonalization: without vs. with) between-subjects design.

Participants were randomly assigned to one of the 4 con-
ditions. Matching procedures were used to ensure balance
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in gender, age and math level. In the scaffolding (S) con-
dition the robot offered guidance after an incorrect answer
and when a new type of sum was introduced. In the non-
scaffolding (NS) condition the robot moved on to the next
problem without guidance. In the personalization (P) condi-
tion the robot used the preferences and interests shared by
the child to make the interaction feel personal and to tailor
the content of the math stories to children’s interests. In
the non-personalization (NP) condition the interaction was
not personal and the robot used math stories with a random
topic and fixed content. After 4 complete interactions the
distribution per condition was: S-P (n=30), NS-P (n=25),
S-NP (n=30), NS-NP (n=28).

3.3 Procedure and Robot Specifications

Pairs of researchers conducted the study in parallel at multi-
ple locations. The researchers were trained prior to the study
and followed a procedure manual during the experiments to
minimize differences between the groups. The experimental
sessions took place in two quiet rooms in the school during
normal school days: in one room the child-robot interaction
took place, in the other room children filled in the survey
while being assisted by a researcher unaware of the child’s
experimental condition. In total, children participated in 4
sessions: 3 sessions on separate days within one week in
May or June 2022, and one final session in February or
March 2023. During all these sessions, children remained
in the same experimental condition. The first three sessions
allowed us to examine short-term learning effects (which we
published in [64]). However, long-term engagement with
tutor robots remains a challenge in educational settings, as
children’s motivation can decrease once the novelty effect
fades [12, 33]. To explore how the child-robot relation-
ship and math learning develop after a prolonged break, we
included a fourth session approximately nine months later.
This break reflects real-life classroom challenges, such as
holidays or inconsistent robot use by teaching staff [65].
The children came to the rooms one by one, starting with
a math session with the robot. A 57 cm tall V6 Nao (human-
oid) robot was placed on the ground. On one side a 9.9 inch
Lenova Tab4 10 tablet was placed in a tablet stand. The tab-
let visually displayed the sums and could be used by the
children as fallback for when the robot could not hear or
understand them. On the other side was a BRADA lap table
with paper and pencil which children could use for calcula-
tions. A rug was placed in front of the robot to seat the par-
ticipants. The robot operated autonomously and was started
from a laptop by a researcher. The researcher remained in
the room and was positioned far behind the child to avoid
unnecessary contact. The researcher only intervened in the
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event of a system crash. In that case, a reboot was performed,
after which the child could continue where it left off.

At the start of the robot math session, children received
general instructions about the study and the robot, and were
reminded that they could stop at any moment without rea-
sons or consequences. Each session consisted of 4 blocks:
introduction/greeting, chitchat, math, goodbye. The differ-
ences between the sessions are shown in Table 1. Specifi-
cally, the first session started with a short getting acquainted
introduction, where names were exchanged and the robot
introduced its goals. This was followed by a how-to-talk-
to-me tutorial, where the robot and child practiced with the
mechanics of the speech recognition, using the tablet as fall-
back, and solving a math problem. This was the same in
all conditions. The second, third and fourth sessions started
with a greeting where the robot said “Hi [name], nice to see
you again” either with (P) or without (NP) the child’s name
inserted, followed by either a generic wave (NP) or the per-
sonalized secret handshake that children co-created with
the robot during the first session (P). After this introduc-
tion, all the sessions continued with a chitchat conversation
between the child and robot, followed by the math conver-
sation. During each math dialog, the robot presented a math
problem in story form. The math conversation consisted of
a prespecified amount of math dialogs with either a random
topic (NP) or a topic that matched with the child’s (from the
chitchat conversations) collected interests (P). For exam-
ple, “Let’s talk about your favorite animal, [lions]” versus
“Let’s talk about the amazing animal, otters”. The robot
transformed the problem to the A x B format verbally and
visually on the tablet. Nineteen different difficulty levels of
multiplication sums were defined. To facilitate children with
an experience of success, each child started with a low dif-
ficulty level in the first session, which changed during all the
sessions based on children’s performance. The system was
programmed in a way that the difficulty level was gradually
increased when children performed well and fast decreased
when they performed poorly. In case children did not know
the answer, the robot gave them guidance (S) or moved on
to the next problem (NS). An example of guidance is the
small sum strategy given in 2.2.1 (a detailed script of all
guidance strategies is provided in the supplemental materi-
als of [64]). This guidance was the same whether it followed

Table 1 Robot interaction blocks per session

Session 1 Session 2 Session 3 Session 4
Introduction & tutorial Greeting Greeting Greeting
(P vs. NP) (P vs. NP) (P vs. NP)
Chitchat Chitchat Chitchat Chitchat
Math Math Math Math
(P vs. NP) (P vs. NP) (P vs. NP) (P vs. NP)
(S vs. NS) (S vs. NS) (S vs. NS) (Svs. NS)
Chitchat & goodbye (incl. Chitchat & Big goodbye Big
co-creation handshake) goodbye goodbye

an incorrect answer or introduced a new sum. Each robot-
interaction session took approximately 15 min. See also
[48] for all robot design specifications.

At the end of the fourth robot math session, children were
escorted to the other room to fill in the survey. They were
seated behind a laptop to fill in a digital Qualtrics question-
naire. It started with an instruction video and a practice ques-
tion. The researcher emphasized that there were no right or
wrong answers and that their own opinion was valued the
most. Children could then fill in the complete 37-item ques-
tionnaire, each question displayed separately on the screen
together with a 4-point Likert scale. The survey was adapted
for this age group by using concrete questions, omitting the
neutral response category, and by avoiding complex word-
ing, indirect questions and negations [66]. To aid children
with reading problems, each question was also accompanied
with a prerecorded video in which the question and answer
options were read out loud. The researcher remained in the
room but did not intervene, unless the child needed explana-
tion. The researcher did register any verbal comments made
by children when filling in the survey. The survey took
10—15 min.

3.4 Measures
3.4.1 Biographical Information

The teachers provided the age, gender, and general math
level for each child.

3.4.2 Math Performance

Three variables measured children’s math performance
during the fourth robot math session (see frequencies and
results regarding the first three sessions in our previous pub-
lication [64]). First, the ratio of correct answers was calcu-
lated for each child based on the number of correct answers
(during the first answer attempt) and the total number of
sums logged by the system (M = 0.71, SD = 0.19, range
=[0.20, 1.00]). Second, a child’s average response time in
seconds was calculated (M = 51.26, SD = 16.65, range =
[20.00, 99.25]). And third, a child’s math level difference
was calculated based on the difference between their start-
ing level and ending level (M = 0.68, SD = 1.97, range =
[-3, 5.

3.4.3 Robot Perception
Originally two variables measured the robot’s social percep-
tion: social presence and feelings of friendship. The social

presence scale was formed using various adapted items
from [31, 67], and [68]. The feelings of friendship scale was
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formed using various adapted parasocial interaction, close-
ness and trust items from [69] and [26]. The answer options
ranged from (1) no, definitely not, to (4) yes, definitely so.
A principle components analysis discovered three distinct
factors: in addition to social presence, feelings of friend-
ship split into two factors which we referred to as paraso-
cial interaction (e.g., “Would you like to see the robot more
often?”) and trust (e.g., “Do you think the robot can keep
one of your secrets?”). The term parasocial interaction was
chosen for the first set of items, because they correspond
to a one-sided perceived friendship characterized by feel-
ing comfortable around the nonhuman entity, looking for-
ward to seeing/meeting it, and having the desire for repeated
interactions [32]. The final scale items are presented under
Appendix A.

Of the original 7-item social presence scale, 2 items were
removed (SP2,5) because they loaded on a different (fourth)
factor. Observations during survey administration indicated
that some children did not grasp the ‘living creature’ concept
(SP5) and/or suddenly shifted their robot perception from
a somewhat human-like entity to a mechanical tool “with
a camera” when asked if the robot could see them (SP2).
The question whether the robot could be a playfellow (SP6)
turned out to be a measurement of parasocial interaction.
The 4 other scale items (SP1,3,4,7) were averaged to cre-
ate a single measure of social presence (a=0.72, M=2.94,
SD=0.59).

Of the original 10-item feelings of friendship scale, 3
items measured trust and 7 items measured parasocial
interaction. These groups of items were averaged to create a
single measure of trust (F8-10: a=0.75, M=3.47,5D=0.59)
and parasocial interaction, the latter also including item
SP6 from the social presence scale (F1-7, SP6: a=0.88,
M=3.46, SD=0.46). A scan for outliers indicated that 3
children scored very negative on the parasocial interaction
scale compared to other children. Only in analyses with this
scale were these children removed from the analyses.

3.4.4 Mediators

Four potential meditators were measured with single items.
Children had to indicate whether the robot helped them
with difficult or new sums (awareness of being helped by
robot: M=3.00, SD=0.94), whether the robot used things
they said during chatting to create a math story (awareness
that robot referred to shared things: M=3.08, SD=0.85),
whether the robot recognized them from last time (percep-
tion of being recognized by robot: M=3.31, SD=0.87), and
whether the robot could understand them well (perception
of being understood by robot: M=2.94, SD=0.67). The
answer options ranged from (1) no, definitely not, to (4) yes,
definitely so.

@ Springer

3.4.5 Covariates

Correlation analyses were performed to investigate whether
the dependent variables significantly related to a child’s
gender, age, math level, math motivation, total number of
math problems, total number of correct answers, and high-
est / average / last math level reached. Math motivation was
measured at the end of the online survey using the Math-
ematics Motivation Questionnaire for Children (MMQC)
of [70, 71]. Only the subscales Task Value (6 items, e.g.
“Do you like math?”; a = 0.91) and Perceived Competence
(6 items, e.g. “Are you good at math?”; o = 0.85) were
included in the study.

The following covariates were identified for specific
dependent variables (p-values ranging from .046 to <.001)
and will be included in the analyses: average response time:
math level (r=.41), math motivation Perceived Compe-
tence (r=.25), total number of math problems (r=—.44),
total number of correct answers (r=—.36); math level differ-
ence: math level (r=—.10), total number of math problems
(r=.31), total number of correct answers (r=.55); social
presence: gender (r=.28), math level (r=—.21); parasocial
interaction: gender (r=.29), math level (r=—.32); trust:
math level (r=—.29).

3.4.6 Technical and Design Checks

To ensure the robot functioned correctly and the math stories
were engaging and appropriately tailored to the children,
participants answered four single-item questions. These
questions assessed whether they could hear the robot well,
understood what the robot said, felt that the robot matched
the sums to their math level, and whether they found the
math stories interesting. The answer options ranged from (1)
no, definitely not, to (4) yes, definitely so. The frequencies
of these responses are reported under 4.1 (Descriptives).

4 Results
4.1 Descriptives

Overall, the robot performed good: children could hear the
robot well (M=3.48, SD=0.66), could understand what
the robot said (M=3.58, SD=0.56), and felt that the robot
matched the math level of the sums to their personal math
level (M=3.32, SD=0.72). Furthermore, the math stories
were found interesting (M=3.45, SD=0.61), particularly
among children with a lower math level (r=—.21, p=.023).
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4.2 Direct Effects of Scaffolding and Personalization
on Math Performance

To investigate whether scaffolding (H1) and personalization
(H4) increased children’s math performance, three analyses
of covariance (ANCOVAs) were performed with scaffolding
and personalization as between-subject factors, and either
(a) ratio of correct answers, (b) average response time or (¢)
math level difference as dependent variable. Each analysis
included their own identified covariates (see Method). As
anticipated, children receiving guidance from the robot (S)
responded faster to the math problems (M=48 s, SD=1.91)
than children who did not receive guidance (NS) (M=55 s,
SD=2.08), F(1,105)=5.472, p=.02. Children receiving
guidance from the robot (S) also increased in math level
(M=1.59, SD=1.94), while children not receiving guidance
(NS) actually decreased in math level (M=—0.36,SD=0.21),
F(1,106)=37.393, p<.001. No main effects were found for
scaffolding on correct answers, nor for personalization on
all math performance measures. Additionally, no interaction
effects between scaffolding and personalization were found.

4.3 Direct Effects of Scaffolding and Personalization
on Robot Perception

To investigate whether scaffolding (H2) and personaliza-
tion (H5-6) increased the robot’s social perception, three
analyses of covariance were performed with scaffolding
and personalization as between-subject factors, and either
social presence, parasocial interaction or trust as dependent
variable, each with their own identified covariates. The
analyses only yielded one main effect for personalization,
F(1,104)=5.676, p=.02, with children in the personalized
condition (P) parasocially interacting more with the robot

Fig. 2 Mediation models for the a
effect of personalization on para-
social interaction via children’s
awareness that the robot referred
to things previously shared by
them (a: upper model) and via
perception that the robot under-
stood them (b: lower model);
*p<.05, ¥*p<.01, ¥***p<.001,
ns=nonsignificant

Personalization

Personalization

(M=3.59, SD=0.05) than children in the non-personalized
(NP) condition (M=3.42, SD=0.48). No main effects were
found on social presence and trust, nor for scaffolding on
social presence. Additionally, no interaction effects between
scaffolding and personalization were found.

4.4 Indirect Effects of Scaffolding and
Personalization on Robot Perception

To explain the impact of personalization on parasocial inter-
action (H8-PI-a-b-c), three mediation analyses were per-
formed (model 4, 5000 bootstrap samples) in PROCESS
(Version 4.2) [72]. As anticipated (see Fig. 2a), children
in the personalized condition more often indicated that the
robot referred to things previously shared by them (a = 0.95,
SE = 0.14) and, in turn, parasocially interacted more with
the robot (b = 0.10, SE = 0.05), B = 0.09 SE = 0.05, 95%
CI =1[0.005, 0.189]. Children in the personalized condition
also more often thought that the robot understood them (a
= 0.28, SE = 0.13) which, in turn, lead to more parasocial
interaction with the robot (b = 0.12, SE = 0.05), B = 0.03
SE =0.02, 95% CI=10.007, 0.086] (see Fig. 2b). However,
children’s perception that the robot recognized them from
last time did not explain the impact of personalization on
parasocial interaction. No indirect effects were found for
the impact of personalization on trust (H8-Trust-a-b-c) and
social presence (H7a-b-c).

Although scaffolding had no direct effect on social pres-
ence, the effect could be completely indirect (as explained
in [72]). For this reason, another mediation analysis (model
4, 5000 bootstrap samples) was performed to investigate
whether children needed to be aware of the robot helping
them in order for them to perceive the robot as socially pres-
ent (H3). As anticipated (see Fig. 3a), children receiving

Awareness that robot
referred to shared things

Friendship
(parasocial interaction)

Perception of being
understood by robot

Friendship
(parasocial interaction)
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Fig. 3 Mediation models for the a
effect of scaffolding on social

presence via children’s awareness

of being helped by the robot (a:

upper model) and for the effect of
scaffolding on parasocial interac-

Awareness of being
helped by robot

tion via awareness of being
helped and social presence (b: Scaffolding > Social presence
lower model) ‘= 35"
b Awareness of being | d=.16" | o ., presence
helped by robot d
a=.90"** b = .32%*
Scaffolding e e e oo > Friendship
o' = 050 (parasocial interaction)

guidance from the robot more often indicated that the robot
helped them with difficult or new sums (a =0.92, SE=0.15)
and, in turn, perceived the robot as more socially present (b
=0.20, SE = 0.06), B =0.18, SE = 0.07, 95% CI = [0.052,
0.336]. This mediated path was extended with parasocial
interaction as dependent variable to investigate whether
social presence increases children’s feelings of friendship
with the robot (RQ1). A serial mediation analysis (model 6,
5000 bootstrap samples) indicated that this indirect effect of
scaffolding on parasocial interaction via children’s aware-
ness of being helped by the robot and social presence was
indeed significant: B = 0.05, SE = 0.02, 95% CI =[0.007,
0.097] (see Fig. 3b).

5 Conclusions and Discussion

The aim of this study was to investigate the impact of a
robot tutor’s social interaction skills on children’s math
performance and robot perception after 4 child-robot inter-
actions. By using a recurring interactions experimental
design, we disentangled the effect of two specific social
skills: scaffolding the explanations to children’s evolving
math performances (by use of progressive schematization),
and personalizing the math conversations to children’s
preferences and interests (by use of the memory-based
personalization strategy). We also specifically investigated
the underlying psychological mechanisms that explain the
impact of these robot’s social skills. See Table 2 for a sum-
mary of all the results.

Regarding the robot social skill scaffolding, the results
indicated that children receiving guidance from the robot
responded faster and increased in math level compared to
children who did not receive guidance. However, scaffolding

@ Springer

did not affect the correctness of children’s answers. This is
most likely an effect of our design. To make a fair com-
parison, the rate of correct answers in all conditions is based
on the first answer attempt. However, in the scaffolding
condition, children received a second attempt, which could
have influenced learning outcomes. Research suggests that
repeated attempts can enhance learning by reinforcing
memory retrieval and providing additional opportunities for
practice and self-correction [73, 74]. Thus, the increase in
math level in the scaffolding condition may partially stem
from the fact that children had an extra opportunity to arrive
at the correct answer. While this design choice aligns with
real-world educational scaffolding, where learners often
receive guided support, it also introduces a potential con-
found that should be considered in future research.

Furthermore, we found that between 10 and 25% of the
incorrect answers were actually robot errors: the child gave
the correct answer, but the robot did not recognize it cor-
rectly. In many cases, the child did not correct the robot,
meaning that the robot processed it as an incorrect answer.
In the scaffolding condition, children used the second
chance as an opportunity to correct the robot, increasing the
difference between both conditions even more. Thus, while
the robot tutor in our study primarily improved children’s
response time, the additional attempt in the scaffolding con-
dition likely contributed to the observed math level increase.
Future studies should consider isolating the effects of scaf-
folding from the effects of repeated attempts to disentangle
their individual contributions to learning.

Although log checks showed that the robot speech-rec-
ognition errors happened just as often in every condition,
recent work suggests that children are more forgiving of
a robot’s mistakes when it first builds a warm, personal-
ized bond [75, 76]. In our study, the personalization and
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Table 2 Overview results (see Fig. 1a and b for more details)

Expectations Results Key takeaways

Scaffolding

HI Direct effect on math performance Scaffolding improves speed and level
« Accepted for: (b) response time, (c) math level (though this may reflect the second-
* Rejected for: (a) answer correctness attempt design), not accuracy.

H2 Direct effect on robot perception No direct scaffolding effect on the
* Rejected for: social presence robot’s social presence.

H3 Indirect effect on robot perception Scaffolding raises the robot’s social
* Accepted for social presence via: awareness of being helped by robot presence only when help is noticed.

RQ1 Relationship between social presence and friendship Social presence predicts parasocial
« Supported for friendship (parasocial interaction) via: awareness of being friendship with the robot, especially
helped by robot when scaffolding is noticed as helpful.

Personalization

H4 Direct effect on math performance Personalization does not improve
* Rejected for all (a, b, c) math performance (accuracy, speed,

or level).

H5-H6 Direct effect on robot perception Personalization increases parasocial
* Accepted for: friendship (parasocial interaction) friendship with the robot, not the
* Rejected for: social presence robot’s social presence.

H7-8 Indirect effect on robot perception Parasocial friendship with the robot
* Accepted for friendship (parasocial interaction) via: (a) awareness that robot  increases when personalization is
referred to shared things, (c) perception of being understood by robot noticed and conveys understanding,
* Rejected for friendship (parasocial interaction) via: (b) perception of being not via perceived recognition.
recognized by robot
* Rejected for social presence via: all (a, b, ¢)

RQ1 Relationship between social presence and friendship Social presence does not explain

* Not supported

personalization-driven friendship
effects.

scaffolding features may likewise have made some errors
feel less serious or even more annoying, depending on the
child. Because we did not track those reactions, we can-
not rule out an undetected influence on learning or robot
perception-related measures. Future work should therefore
log every interactional error, observe children’s responses
to these errors, and test whether specific social skills (such
as personalization or scaffolding) can mitigate the impact
of robot mistakes. Being transparent about these flaws will
make robot tutor research more realistic and help designers
build systems that match children’s expectations and error
forgiveness thresholds.

Importantly, the observed math level decrease in the
non-scaffolding condition does not imply that robots nega-
tively impact learning but rather highlights the necessity of
explanatory feedback in educational interactions. This effect
is commonly observed in human tutoring as well [73, 74],
where the absence of guidance may lead to reinforcement of
incorrect strategies, resulting in stagnation or even a decline
in performance rather than conceptual growth.

Beyond its impact on learning, scaffolding also influ-
enced how children perceived the robot socially, though
only indirectly. Specifically, when children recognized that
the robot helped them, scaffolding increased social pres-
ence. This aligns with the argument that children must
perceive scaffolding as beneficial for it to enhance their

perception that the robot is a social entity [41, 49, 50]. In
our study, scaffolding was operationalized as arithmetic
explanations provided after an incorrect answer and when a
new type of sum was introduced, and we captured children’s
perceived helpfulness via a single-item measure (“the robot
helped me with difficult or new sums”). We did not directly
assess whether the amount, timing, or content of explana-
tions optimally matched each child’s moment-to-moment
expertise or informational needs. Prior work suggests that
when support is experienced as appropriately targeted and
non-redundant, a tutor is perceived as more intelligent and
socially present [49], whereas overly detailed or unneces-
sary explanations can be experienced as mechanical and
reduce social presence [e.g., [21, 77-80]. This highlights
the need for more sophisticated robot tutoring systems that
are not only designed around the robot’s technical capabili-
ties (i.e., a robot-centered perspective) but also prioritize the
child’s needs (i.e., a child-centered perspective) [81]. Future
research should therefore examine adaptive scaffolding that
adjusts in real time, while explicitly measuring scaffolding
fit (e.g., perceived too much/too little help, relevance, and
timing) to test when pedagogical support also fosters social
engagement [81, 82]. By tailoring support to the child’s
needs, the robot can maintain its role as an engaging and
intelligent social partner.
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Interestingly, social presence increased children’s feel-
ings of friendship for the robot, as indicated by higher
parasocial interaction. This supports the theory that when
the robot is perceived as a social being, it becomes more
suitable for relationship formation, and children are more
willing to initiate a friendship with it [14, 23, 25]. This is a
first step in understanding how children’s internal states are
interconnected and what processes underlie the impact of
robots. Nevertheless, these two robot perception responses
are not always expected to be related [14]. For instance, in
the current study, social presence was an important precur-
sor to friendship when scaffolding was used, but not when
personalization was used. One possible explanation is that
scaffolding behaviors are experienced as a supportive act by
the robot. Some children appreciate this support more than
others, for example, because they need it more or because
they are naturally more appreciative. It is this level of per-
ceived relevance and appreciation that could determine
how socially meaningful the supportive act is, resulting in
different social presence scores and, in turn, stronger feel-
ings of friendship. This would align with the broader idea
that children’s pre-existing robot attitudes (e.g., its personal
worth, alignment with personal goals) play an important
role in child-robot relationships [83, 84]. Additionally,
this finding supports the ‘Relevant Needs’ proposition of
Konijn et al. [85], which suggests that children are more
likely to form bonds with artificial others when the interac-
tion serves their needs. According to this theory, an affec-
tive bond emerges when a social entity — such as a robot
—responds to an individual’s goals, desires, or tasks in a way
that is subjectively significant. Our results provide empiri-
cal support for this theoretical proposition by demonstrating
that scaffolding fosters social presence and friendship only
when it is perceived as relevant to the child. This highlights
the importance of designing robot interactions that are not
just socially engaging but also meaningfully aligned with
children’s individual needs and learning contexts. Further
research is needed to determine under which circumstances
social presence is a key precursor to friendship and how
adaptive scaffolding can optimize child-robot relationships.

Regarding the other robot social skill, results indicated
that personalization did not increase children’s math
performance. Human tutoring studies often suggest that
personalization enhances children’s interest in learning
materials, which in turn improves learning performance
[62]. However, in our study, most children found the math
stories interesting (see 4.1) and frequently mentioned to
the researchers that they found them funny. This suggests
that the humor in the math stories may have played a key
role in capturing their interest. Embedding an educational
message (mathematics) within an entertaining narrative
(humorous story), also known as ‘entertainment education’,
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is a well-established strategy for enhancing children’s
motivation, engagement, and concentration, leading to
better academic performance [86, 87]. Since a/l children
were exposed to the humorous stories, this strategy may
have already optimized their interest, potentially masking
any additional effect of personalization. Notably, the only
study to our knowledge that demonstrated a positive effect
of memory-based personalization by robots on children’s
learning performance did not incorporate humor or enter-
tainment elements in its design [63]. Future research should
therefore disentangle the individual effects of personaliza-
tion from those of entertainment education.

As anticipated, personalization did increase children’s
feelings of friendship as indicated by higher parasocial
interaction. First, we found evidence for how this design
element functions: children’s awareness that the robot
referred to things they had previously shared mediated this
effect. Alongside our finding that children needed to rec-
ognize the robot’s scaffolding, this supports Van Straten
et al.’s [25] argument that a robot’s social skills must be
salient and unambiguous enough for children to notice and
be influenced by them. Second, personalization fulfilled
children’s interpersonal need to be understood. Specifically,
memory-based personalization increased children’s per-
ception that the robot understood them on a personal level
which, in turn, increased their parasocial interaction with
the robot. This finding aligns with previous research [12,
57, 59], suggesting that recalling disclosed information and
tailoring interactions accordingly signals to children that
they are being heard and that the robot empathizes with their
preferences and interests. Since feeling understood is a core
aspect of close friendships [57], this highlights the potential
of personalization in fostering social bonds between chil-
dren and robots.

Unfortunately, the impact of personalization on paraso-
cial interaction was not mediated by children’s perception
that the robot recognized them from last time. However, we
cannot rule out the possibility that personalization fulfilled
children’s interpersonal need to be recognized. Our results
showed positive correlations between personalization, the
perception of being recognized, and parasocial interaction.
We suspect the indirect effect was weakened because some
children in the non-personalized condition mentioned dur-
ing survey administration that the robot recognized them
because it said “nice to see you again”. Presumably, without
using a child’s name or other personal references, a simple
polite greeting with the word ‘again’ can already be inter-
preted as a sign of recognition. These findings raise three
key questions for future research:

» whether a single-item recognition question adequately
captures children’s full experience,
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» whether recognition was assessed at the right moment
(since cognitive overload is a risk at the start of the conver-
sation), and

» whether the specific facts remembered by the robot
matter to children and are retained by them.

Measuring the child-robot relationship remains a chal-
lenging task as studies and domains differ in their concep-
tualizations and operationalizations, while widely accepted
standards of measurement are lacking [25, 88]. Our scale
for feelings of friendship captured two distinct concepts,
parasocial interaction and trust, with only the former being
influenced by the robot’s social skills. Parasocial interaction
is a well-known phenomenon in child-media studies, where
interactions with nonhuman entities often develop into one-
sided perceived meaningful interpersonal connections that
stimulate a desire to see and continuously interact with the
nonhuman entity [32]. There is a plethora of research dem-
onstrating that children form close parasocial relationships
with all sorts of animate and inanimate objects, including
intelligent characters [27, 30, 34]. Yet many child-robot
studies have focused on trust as the dominant measure of
relationships, even though its effects are more inconsistent
[25]. Trust is defined and measured in many ways [89],
and it is unknown whether it is essential to all nonhuman
friendships or rather context depended. In the present study,
a higher level of social trust was measured even though our
robot did not share sensitive information or keep secrets.
Perhaps lower levels of social trust (e.g., trusting the robot
to treat answers with respect) as well as aspects of compe-
tency trust (e.g., trusting the robot’s feedback) did play a
role in our robot math tutor setting.

While social bonds with robots are well-documented in
child-robot interaction research [5, 17], the ethical implica-
tions of these relationships remain complex [17]. In edu-
cational settings, such bonds may foster engagement and
learning, but in other contexts, they could raise concerns
about overtrust and emotional dependency [17]. Future
studies should explore in which contexts social connections
with robots are beneficial to children and where they might
introduce risks. This challenge is further underscored by
the difficulty of measuring trust in socially assistive robots,
as perspectives and expectations vary across stakeholders,
interactions evolve over time, and learning environments are
often dynamic and unstructured [90]. Developing nuanced
frameworks for assessing trust and parasocial bonds will
be critical in advancing ethical and effective child-robot
interactions.

In light of our findings, we propose several key design
recommendations for educational robots. First, scaffolding
should be adaptive to a child’s evolving skill level, ensur-
ing that feedback remains relevant and beneficial without
becoming redundant or frustrating. Second, personalization

should be designed to be salient and meaningful, as chil-
dren must recognize and appreciate the robot’s tailored
responses for personalization to foster social bonds. Third,
robots should employ strategies that enhance social pres-
ence, as children are more likely to form connections with
robots they perceive as socially engaging and helpful. This
includes not only dynamic social interactions but also
mechanisms that signal understanding and potentially rec-
ognition. Finally, educational robots should be designed
with ethical considerations in mind, balancing engagement
with safeguards that prevent overtrust or emotional over-
reliance. Future research should continue refining these ele-
ments to optimize both learning and social engagement in
child-robot interactions.
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