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ABSTRACT 
To beneft from the social capabilities of a robot math tutor, instead 
of being distracted by them, a novel approach is needed where the 
math task and the robot’s social behaviors are better intertwined. 
We present concrete design specifcations of how children can 
practice math via a personal conversation with a social robot and 
how the robot can scafold instructions. We evaluated the designs 
with a three-session experimental user study (� = 130, 8-11 y.o.). 
Participants got better at math over time when the robot scafolded 
instructions. Furthermore, the robot felt more as a friend when it 
personalized the conversation. 

CCS CONCEPTS 
• Applied computing → Education; • Human-centered com-
puting → Empirical studies in interaction design; • Comput-
ing methodologies → Cognitive robotics. 
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1 INTRODUCTION 
The COVID-19 pandemic disrupted education and increased in-
equalities in the classroom worldwide [59]. It is not easy for schools 
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aim to contribute to reducing math defciencies in primary schools 
by utilizing a social robot math companion. 

Although the efcacy of social robots in education has been well 
established, there are still a number of key challenges that pre-
vent a wide spread adoption of this technology [4]. Belpaeme et al. 
(2018) identifed the technical challenge of facilitating a robust au-
tonomous social interaction and the logistical challenge of content 
creation. Furthermore, using the social capabilities of a social robot 
does not automatically result in a better learning outcome [31, 33]. 
More research is needed to address the identifed challenges and 
determine how to best use the robot’s social capabilities. 

In previous work we presented a conversational social robot that 
is able to autonomously and robustly facilitate [40] and personalize 
a multi-session interaction [39]. A new math module for the robot 
has been co-designed with children, teachers, and math education 
experts. The results of a series of focus groups is presented in [19]. 
In this paper we present the robot behavior design of the math 
module and provide concrete guidelines for creating the necessary 
math-related interaction content. 

At the core of our design lies the operationalization of two social 
constructivist principles. Firstly, learning is inherently a socially 
interactive process [1, 32, 53, 68]. Secondly, it is more efective to sus-
tainably acquire math problem solving skills in a socially grounded 
“realistic” context [13]. The latter is the basis of the instruction 
theory for mathematics we follow, called Realistic Mathematics 
Education (RME) [61]. 

Instead of adopting the classical paradigm of using a tablet (or 
other aid) as focal point for the math task and use the robot to 
provide feedback or intervene in another way (e.g. [5, 12, 31]), we 
propose a novel approach where the learning task is fully inte-
grated in the social interaction. The core of this interaction is a 
conversation. We created a storyworld for the robot to exist in, 
like a character in a book. This storyworld helped us to create 
an extensive collection of connected dialogs. In these dialogs the 
child is presented with a math problem that the robot could use 
help with to solve. The math module consists of three components. 

to support students to catch up. With the SOROCOVA project1 we

1http://www.sorocova.nl/ 
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The frst component personalizes the dialogs based on the prefer-
ences and interests the child self-disclosed during the conversation. 
The remaining components are to keep the learning task in the 
Zone of Proximal Development (ZPD) [42]. Specifcally, the sec-
ond component adapts the difculty of the math problem based on 
the child’s past performance. The third component scafolds the 
learning by ofering guidance when a child is unable to solve the 
problem correctly [3, 72]. 

We are interested in the efect of the frst and last component, 
that directly infuence the social interaction, on how social the robot 
is perceived (robot sociability) and the learning outcome (math per-
formance). The goal of the personalization is to increase the robot’s 
sociability, foster the child-robot relationship, and thus improve 
the learning outcome. Furthermore, scafolding is provided using 
the RME method of progressive schematization [24]. Children are 
ofered guidance to procedurally break down the math problem. We 
not only expect that scafolding will directly improve the learning 
outcome, but that the act of ofering guidance will also increase the 
robot’s sociability. We evaluated the efect of personalization and 
scafolding on the robot’s sociability and math performance with 
a three-session user study (� = 130 children, 8-11 years old) at six 
primary schools. 

With this paper, we contribute by providing concrete and well 
grounded solutions for the identifed challenges, by ofering a novel 
approach of utilizing the social capabilities of robots in math edu-
cation, and by thoroughly evaluating our designs with an extensive 
multi-session in-the-wild user study. 

2 RELATED WORK 

2.1 Social Constructivism in Education 
Learning tends to be more of a shared, social process than an 
individual experience. Within social constructivism, knowledge 
development is the result of social interaction and language use 
[41]. Teachers (and others) can challenge children to share their 
own ideas, provide realistic contexts in which they can test their 
ideas, and help them distil rules and guidelines from these ideas 
[41, 47, 69]. Learning together may also increase a deeper under-
standing of what is being learned, the ability to solve problems, and 
the motivation to learn [41, 47, 48]. Social constructivism is a moti-
vation for using the social capabilities of a robot in an education 
context. 

While children can learn from both human and non-human 
agents, it is important that these potential teachers are socially 
relevant, also referred to as “meaningful” [16, 28, 36]. We tend to 
distrust information presented by unfamiliar agents that we have 
not learned from in the past [36]. For this reason, children learn 
mathematics better from their mother and familiar onscreen charac-
ters than from an unfamiliar agent [36]. Literature suggests that the 
way children are related to a non-human agent determines whether 
they are motivated to actively attend to, encode, retain, and ulti-
mately imitate and learn from the agent [16]. Children relate to 
non-human agents “parasocially”, meaning they have developed a 
one-sided (from the perspective of the child) friendship with the 
agent that can instill emotional feelings for and a greater motiva-
tion to interact with the agent [16, 27, 36]. From this perspective, 

children may be more motivated to learn long-term from a robot 
math tutor when they have developed feelings of friendship for it. 

Robots can stimulate feelings of friendship through strategic 
child-robot interactions [39, 64]. Human interactions become in-
creasingly familiar over time due to a shared history and personal 
common ground [35]. Likewise, children have a need for familiar 
content and patterns of interaction [39]. Studies have demonstrated 
that children felt more close to the robot, perceived the robot as a 
friend, and wanted to continue the conversation when the robot 
used the child’s name, referred to things the child had shared in 
previous sessions, and talked about topics that interested the child 
[35, 39]. 

Non-human agents are not only socially relevant through feel-
ings of friendship, but can also be through their human-like re-
sponsiveness [8, 36, 64]. The more a child perceives an agent to 
appropriately respond to his/her actions (social contingency, e.g. 
eye-contact, feedback, guidance), the more the interaction and agent 
are perceived to be realistic, leading to greater trust in the educa-
tional information provided [36]. In other words, tuning in on the 
specifc interaction needs of a child, whether in chitchat or tutoring 
dialogs, may increase a robot’s social presence, which is the degree 
to which a robot is perceived as a “real” person [10]. Social presence 
is important for the acceptance of and engagement with robots [55] 
and can thereby stimulate children’s willingness to interact with 
the robot math tutor long-term. 

2.2 Realistic Mathematics Education 
Realistic Mathematics Education is an instruction theory for math-
ematics education developed as an alternative to the more mecha-
nistic teaching approaches [61]. RME has six main characteristics 
[58, 61, 62]. 

• Active. Following the principles of the active learning para-
digm [44], math is best learned by doing it [61]. 

• Reality. Math problems are connected to a realistic context 
[62]. Note that realism is broader than real-world, it can also 
stem from a fctional reality [61]. 

• Levels. Understanding moves from informal context-related 
solutions to more general insights about the relation between 
numbers, more formal concepts, and solution strategies [61]. 
This transition happens by creating shortcuts and schemati-
zations [24, 29]. 

• Holistic. The diferent math disciplines should not be treated 
in isolation from each other. 

• Interactive. Being a social constructivist approach RME also 
emphasizes that learning math is best done in interaction 
with one another. It makes thinking processes more explicit 
[62] and stimulates refection [61]. 

• Scafolding. Teachers have a pro-active role to guide students 
through the diferent levels of understanding. Preferably by 
linking relations and schematizations they already discov-
ered to new learning goals. This is called guided reinvention 
[21], which is a scafolding strategy [3]. 

Using a social robot in math education fts in a RME approach. 
It inherently makes it active and interactive. Acting as a guide to 
improve a child’s level of understanding is a challenging, but ftting, 
role for the robot. The robot is also an interesting starting point 
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for a fctional reality, about who the robot is and what it wants 
[14, 15, 34, 39, 57], to ground math problems in. Making the math 
more holistic has more to do with the content of the math activity 
than with the robot. 

We adopt one additional non-RME instruction component be-
cause of its great ft with using a robot. Experiencing success while 
learning math is a key predictor for a positive learning outcome 
[23, 30]. In a study where they artifcially manipulated the suc-
cess rate, they found that the more success children experienced, 
the more math problems were ultimately attempted and the larger 
the improvement in performance was [30]. The more confdent 
children are, the better they are at math [23]. Friendly robots are 
often perceived as non-judgemental [25, 56, 60], which is a way the 
robot can contribute to the experience of success and children’s 
confdence [22, 52, 54]. 

2.3 Social Robots in Math Education 
For educational robots in (second) language learning, intertwining 
social interaction and learning has been proven benefcial. Several 
studies showed that child-robot conversations can increase learning 
gains, when using a meaningful context that is familiar to, and 
liked by children [4, 67]. In mathematics education however, the 
opportunities of integrating child-robot interaction and learning 
have remained largely unexplored. 

An often used approach is to use an aid, like tablets or touch 
tables to perform a math task [5, 12, 31, 50]. Those that integrate 
the math task into a direct interaction with the robot not always 
include social behaviors (e.g. [26]) or not couple the social behaviors 
directly to doing math (e.g. [33]). A consequence of this disconnect 
is that there is a risk that the social behaviors of the robot distract 
the child from the math task instead of support it [31, 33]. 

An alternative strategy is to intertwine the social behaviors with 
the math task. Not having to switch between the task and the robot 
(e.g. caused by social cues and other sounds and movements of the 
robot) saves cognitive resources [20]. This means less distraction 
and a more deep processing of the educational content [17]. 

3 DESIGN RATIONALE AND SPECIFICATIONS 
In this section, we present the rationale and specifcations of the 
design of a child-robot math interaction. Based on the input from 
domain experts [19] we decided to focus on multiplication for this 
frst iteration. The core of the interaction is a conversation. From 
the related work we identifed fve requirements the conversation 
needs to fulfl. The conversation needs to: 

(1) contribute to relationship formation [34, 36, 39]; 
(2) be intertwined with the math task [17, 20, 62]; 
(3) provide a grounded reality for the math problems [61, 62]; 
(4) scafold the learning process by providing guidance at the 

right time [3, 21] and 
(5) provide children with an experience of success [23, 30]. 

The frst step is to have a solid architecture that facilitates a ro-
bust social conversation. This is provided by an artifcial cognitive 
agent. The second step is to create dialogs for the conversation. 
We created a storyworld to help the dialog writing process. The 

technical and creative details of the cognitive agent2 and the story-
world are provided in the supplemental materials. The third step 
is to include robot behaviors that fulfll the fve identifed require-
ments. This is provided by three modules: math level adaptation, 
personalization, and scafolding. 

3.1 Math Dialogs 
We distinguish between three types of dialogs. Chitchat dialogs to 
create a personal conversation, functional dialogs for greetings, and 
math dialogs. A math dialog is a short anecdote about one of the 
jobs the robot has had before. In this dialog the robot introduces 
a multiplication problem that it could use help with to solve. For 
example, “I used to work as a dishwasher in a restaurant. After a 
busy night there were X piles of dirty plates and each pile contained 
Y plates. How many dirty plates did I have to clean?”. Depending 
on the current math level of the child, diferent values would be 
inserted for the X and Y. 

The robot has had a wide variety of jobs and has multiple anec-
dotes for each job, creating a vast reality to ground the math prob-
lems in. The child and the robot are simply chatting about each 
others interests, triggering the robot to remember one anecdote 
after the other, intertwining the math task into the conversation. 
The robot presents a math problem not as an assignment children 
have to get right, but rather as something it forgot the answer to 
and would like to have solved. The child helps the robot by solving 
the problem. In case they cannot provide a correct answer, the robot 
does not judge, suddenly remembers the actual answer, and moves 
on. This is a strategy to steer the focus away from right and wrong, 
and focus more on practicing and experiencing success [30]. 

3.2 Math Level Adaptation 
12 diferent difculty levels of multiplication sums were defned 
ranging from 2x[2-10] to [11-100]x[11-100]3. To facilitate children 
with an experience of success, as suggested by [30], each child 
started with a low difculty level (lvl 2). After each correct answer 
a point is added to a counter. After each incorrect answer a point is 
subtracted from the counter. If the counter is at 0 when an incorrect 
answer is given, the difculty level is lowered by 1. If the counter is 
at 2 (threshold value) when a correct answer is given, the difculty 
level is increased by 1. After each level change the counter is reset 
to 0. This bufered approach also facilities an experience of success 
by providing a gradual increase of difculty when children perform 
well and a fast decrease in difculty when they perform poorly. This 
is refected by participants’ perception of difculty. The majority 
(82%) thought the math problems were easy (33%) or at their level 
(49%). 13% felt they were too easy and only 4% thought they were 
(too) hard. 

3.3 Personalization 
Personalizing diferent aspects of the conversation has been shown 
to be an efective strategy to foster the child-robot relationship [11, 
37, 39, 45, 66]. We implemented the memory-based personalization 
strategy presented by [39]. The chitchat dialogs contain a lot of 
questions about the child’s interests, hobbies, and preferences. This 
information is stored in a persistent database. 
2Code: https://bitbucket.org/socialroboticshub/sorocovagoalagent/src/main/ 
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The memory-based personalization strategy consists of three 
sub-strategies. The frst is memory references where the robot uses 
the name of the child and refers to things the child has previously 
shared with the robot. The second is content augmentation. It in-
cludes co-creating a secret handshake the robot displays at the start 
and end of every session. Finally, there is content selection based 
on the stored interests and preferences of the child. To more di-
rectly couple personalization to the math task, the content selection 
strategy specifcally targets the math dialogs. For example, during 
the chitchat the robot tells the child it worked on a farm and asks 
which farm animal they like most. If they like horses the most, the 
robot recalls the time it has worked as a stable help and needs help 
fguring out how many horses were at the ranch. If they liked cows, 
the same dialog will be used but with cows instead. 

The manipulation checks included in the user study (see Section 
4) not only showed that children do notice these memory references 
(� = .399, � < .001). They also thought the math stories were more 
interesting when personalized (� = .251, � = .016). 

3.4 Scafolding 
Progressive schematization is a Realistic Mathematics Education 
method that starts with helping children to organically develop 
models for mathematical concepts (e.g. 4 is double as much as 2) 
and informal strategies (e.g. 4x13 is double as much as 2x13). This 
is followed by helping them discover patterns and procedural rules 
within their informal strategies. It helps them increase their level 
of understanding in such a way they can more easily generalize 
strategies to solve similar or more difcult problems [24, 29, 58]. 

The scafolding module will include an additional step after the 
child answers incorrectly and before the robot tells the answer and 
moves on. The robot will state it remembered a diferent answer 
and wants to be sure. The robot will go through an informal strat-
egy3 that the child could use to solve the current problem, without 
providing an answer. The robot subsequently asks the child to dou-
ble check their solution and provide a new answer. For example, 
“To solve 9x12 you could start with 2x12 and double it to get 4x12. 
Then double it again to 8x12 and this is only 1x12 away from the 
solution”. When receiving guidance children felt they were helped 
more by the robot (� = .316, � = .002) and felt the problems were 
easier to solve (� = −.429, � = .001) then without guidance. 

3.5 Child-Robot Math Interaction 
We developed three child-robot math interaction sessions for our 
prototype. The duration of each session is approximately 15 minutes. 
The frst session starts with a getting acquainted introduction (1 
min), where names are exchanged and the robot introduces its 
fctional and real-world goals. This is followed by a how-to-talk-
to-me tutorial (2 min), where the robot and child practice with the 
mechanics of the speech recognition, using the tablet as fallback, 
and solving a math problem. This is the same in all conditions. 
The following session blocks have personalization (NP vs. P) and 
scafolding (NS vs. S) manipulations. 

The second and third session start with a greeting (0.5 min). The 
robot says “Hi [name], nice to see you again” either with (P) or 
without (NP) the child’s name inserted, followed by either a generic 
3See supplemental materials for full overview 

wave (NP) or the personalized secret handshake (P). After the start, 
the child and robot engage in a chitchat conversation (1: 2 min, 2: 2.5 
min, 3: 0.5 min), followed by the math conversation (1: 8 problems, 
10 problems, 12 problems). After session 1 and 2 another chitchat 
block is included (1 min) followed by a goodbye (1 min). After the 
third session only a, bigger, goodbye block (2 min) is included. 

Memory references (P) or a non-personal alternative of the same 
length (NP) are included in the chitchat and math conversations. 
For example, “Let’s talk about your favorite animal, [lions]” versus 
“Let’s talk about the amazing animal, otters”. The math conversation 
consist of a prespecifed amount of math dialogs with either a 
random topic (NP) or a topic that matches with the child’s collected 
interests (P). No dialog is included more than once. 

During each math dialog the robot presents a math problem in 
story form. The robot transforms the problem to the A x B format 
verbally and visually on the tablet. Then the robot waits for the 
child to act or for a time limit of 90 seconds to expire. After the 
90 seconds the robot asks if the child needs more time (resetting 
the timer) or if they want to get help (S) or move to the next math 
problem (NS). 

Each child is provided with a paper and pencil to do calculations. 
The Nao robot has buttons on its feet with a led above them. Those 
leds are turned green (right) and purple (left). The child can press a 
button to signal the robot they are ready to give an answer (green 
button), or that they do not know the answer (purple button)4. In 
case they do not know the answer, the robot will give guidance (S) 
or move to the next problem (NS). 

When the child does answer, the robot repeats the answer. The 
leds above the feet buttons turn green (right) and red (left) for 
three seconds. If the child presses the red button, they can answer 
again. This can be used, for example, if the robot misheard the 
answer or if the child wants to correct a mistake last-minute. After 
three seconds or if the child pressed the green button, the robot 
evaluates the answer and adapts the math level for the next problem 
accordingly. After a correct answer the robot praises the child and 
after an incorrect answer the robot either moves on (NS) or provides 
guidance (S). 

4 METHODS 

4.1 Hypotheses 
Our core design principle is that by positioning the practicing of 
math in the social space of the child-robot interaction, we facili-
tate learning. Providing personalized multiplication problems and 
scafolding for children to schematize the problem are the two cen-
tral strategies for the robot to achieve this. Following the rationale 
provided in the previous section, we expected that personalization 
and scafolding both positively afect performance in math and the 
robot’s sociability. 

4.1.1 Math Performance. We measured the ratio of correct answers 
and the time it takes to provide an answer. We hypothesised that 
over time participants will give more correct answers (a) and solve it 
faster (b) with personalization (H1a and H1b) and scafolding (H2a 
and H2b). 

4An implementation of the Touch-Based Speech Activation pattern from [26] 
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4.1.2 Sociability. We established that increasing the robot’s socia-
bility is important for two reasons. Firstly, if we want to stimulate 
learning via social mechanisms, the robot needs to be perceived as 
a social relevant entity (social presence). Secondly, being able to 
experience feelings of friendship with the robot increases children’s 
willingness to continue interacting with the robot [39]. Both aspects 
are important for the long-term adherence and efectiveness of the 
math activity with the robot as children imitate and learn more 
from socially relevant entities with which they have meaningful 
connections [28, 36]. 

We hypothesised that after three sessions participants in the person-
alization condition would perceive the robot as more socially present 
(H3a) and experience more feelings of friendship (H3b). Furthermore, 
we hypothesised that in the scafolding condition the robot would be 
perceived as more socially present (H4a). We did not expect a direct 
efect of providing scafolding on feelings of friendship (H4b). 

4.2 Participants 
130 children aged 8-11 (97% 9-10; 63 boys and 67 girls) completed 
the experiment. The participants were recruited from six diferent 
Dutch primary schools, all from grade 6. The respective teachers 
provided a centralized national math level, ranging from E (lowest) 
to A (highest), for each child. The levels were spread fairly evenly 
between levels, with level E being the smallest group (14%) and 
level A and B being the biggest (both 23%). Participants with the 
same age, gender, and math level where randomly split over the 
experimental conditions. Participants and their legal guardians 
signed an informed consent form before participating. This study 
was approved by the ethical committee of the institution of the last 
author (ref. number: 2022-054032). 

4.3 Experimental Design 
The study had a mixed factorial design, namely with 2 (personaliza-
tion: without vs. with) x 2 (scafolding: without vs. with) between-
subjects factors, and sessions (1, 2, 3) as within-subjects factor. The 
four conditions are abbreviated as P-S (� = 33), P-NS (� = 31), NP-S 
(� = 33), NP-NS (� = 33). 

In the personalization (P) condition the robot used the interests 
and preferences shared by the child to personalize the topic and 
content of the math stories. In the non-personalization (NP) con-
dition the robot used math stories with a random topic and fxed 
content. 

In the scafolding (S) condition the robot ofered guidance after 
an incorrect answer. In the no scafolding (NS) condition the robot 
moved on to the next problem after an incorrect answer. 

4.4 Measures and Instruments 
4.4.1 Biographical Information. The teachers provided the age, 
gender, and general math level for each child. 

4.4.2 Math Performance. The system logged for each multiplica-
tion problem whether it was answered correctly, and the time it 
took to provide an answer. For each session, the ratio of correct 
answers (� = .81, �� = .16, range = [.2, 1.0]) and the average time 
it took to solve a problem (� = 27.7, �� = 9.4, range = [16.9, 86.0]) 
was calculated per participant. 

4.4.3 Sociability. Social presence and feelings of friendship were 
measured using two adapted self-report questionnaires. The social 
presence questionnaire was based on the questionnaires developed 
by [2] and [70] and contained fve items. The feelings of friendship 
questionnaire was based on the questionnaires developed by [63] 
and [43] and contained six items3. To accommodate children a 4-
point Likert scale was used: No, defnitely not; No, not so; Yes, a 
little; Yes, defnitely so [18]. 

Three pairs of research assistants were running the study in 
parallel at multiple locations. To minimize the diferences between 
the groups, a digital Qualtrics questionnaire was developed that 
required no actions from the research assistant. It included instruc-
tions, a practice question, and both questionnaires. Each question-
naire item together with the four-point Likert scale were displayed 
on the screen. The question was read out loud by a researcher in 
a prerecorded video. Reading the questions out loud one-by-one 
helps children to process and actively deliberate before giving an 
answer [38]. Participants could click on one of the four options. 

Separate principal components analyses with varimax rotation 
were performed for the social presence and feelings of friendship 
scales. While the 5 items of social presence formed 1 factor, the 
reliability of this scale was insufcient (� = .577). For this reason, 
the individual items were included in the analyses. The 6 items 
of feelings of friendship formed a scale with sufcient reliability, 
and were averaged to form a single measure (� = .778, � = 3.708, 
�� = .345). 

4.4.4 Manipulation Check. To check whether participants observed 
the implemented manipulations (personalization, scafolding, and 
math level adaptation), fve manipulation check items were added 
to the digital questionnaire. 

4.4.5 Covariates. Children’s gender (ranging from: � = .173 to .402, 
� =< .001 to .049) and math level (ranging from: � = −.180 to −.296, 
� =< .001 to .042) correlated signifcantly with social presence and 
feelings of friendship, and were thus included as covariates in the 
analyses. 

4.5 Set-up and Procedure 
The study took place in an unoccupied room in the school during 
normal school days. A 57 cm tall V6 Nao (humanoid) robot was 
used (see Figure 1). It was placed on the ground. On one side a 9.9 
inch Lenova Tab4 10 tablet was placed in a tablet stand. On the 
other side a BRÄDA lap table was placed with paper and pencil. A 
rug was placed in front of the robot to seat the participants and a 
handycam camera was positioned behind the robot to record the 
participants behaviors during the interaction. The robot operated 
autonomously and was started from a laptop by a research assistant. 
The research assistant remained in the room and was positioned far 
behind the participant to avoid unnecessary contact. The research 
assistant only intervened in the case of a system crash. After a 
reboot, the participant could continue the interaction where they 
left of. 

Participants came to the room one by one. There were three 
sessions on separate days within one week. At the start of the 
frst session, participants received general instructions about the 
study and the robot and were reminded that they could stop at any 
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moment without reason or consequences. The interaction with the 
robot started with a tutorial on how to talk to it and how the math 
exercises worked. The remainder of the frst session and the two 
other sessions consisted of the math activity as specifed in Section 
3.5. After the third session, participants could say goodbye to the 
robot and were escorted to a separate room where they flled in the 
digital questionnaire and were interviewed by a diferent research 
assistant unaware of the child’s experimental condition. 

Figure 1: Experimental set-up with the robot in the middle, 
a small lap table with a paper and pencil on the right, and a 
tablet on the left. 

5 RESULTS 

5.1 Math Performance 
The method of Brunner et al. (2002) [6], and the nparLD R-package 
[46], for non-parametric analysis of longitudinal data in factorial 
experiments (with the Wald-Type Statistic [WTS]) was used to 
perform a three-way analysis to investigate if there were interac-
tion efects between the scafolding and personalization conditions 
and session on the ratio of correct answers and the answer time 
respectively (H1, H2). Post hoc tests were run with a Bonferroni 
correction. Data points are median [quartiles]. 

5.1.1 Correct Ratio. The three-way interaction was not statistically 
signifcant, ��� = 1.6, � = .45. There was a signifcant two-way 
interaction between scafolding and session,��� = 27.6, � ≤ .0001. 
All other two-way interactions were not statistically signifcant 
(� ′ � ≥ .27). Furthermore, signifcant main efects of scafolding, 
��� = 76.4, � ≤ .0001, and session, ��� = 14.4, � = .0007, 
on the ratio of correct answers were found. The main efect of 
personalization was not statistically signifcant, ��� = .21, � = .64. 

The ratios in the scafolding conditions are shown in Figure 
2 (top). Mann-Whitney U tests revealed a statistical signifcant 
diference between no scafolding ratio (2: .79 [.70 .89] ;3: .70 [.67 
.75]) and scafolding ratio (2: 1.0 [.83 1.0];3: 1.0 [.83 1.0]) in session 2, 
� = 3307.0, � = 5.9, � ≤ .0001, Cohen’s � = 1.18, and 3, � = 3623.5, 
� = 7.9, � ≤ .0001, Cohen’s � = 1.89. The diference in session 1 (.75 
[.62 .88] vs. .88 [.67 1.0]) was not statistically signifcant, � = 2387.0, 
� = 2.2, � = .03. 

Friedman’s tests revealed that for both scafolding conditions 
there was a statistically signifcant efect of session on the correct 
ratio, �2’s ≥ 10.9, � ′ � ≤ .004. Pairwise comparisons showed that 
in the no scafolding conditions performance dropped signifcantly 
between the second (.79 [.70 .89]) and third session (.70 [.67 .75]), � = 
.002. In the scafolding condition on the other hand performance 
increased after the frst session (.88 [.67 1.0]) and stabilised at 1.0 
[.83 1.0], � = .014 (session 1-2) and � = .002 (session 1-3). No other 
pairwise comparisons were statistically signifcant, � ′ � ≥ .021 

5.1.2 Answer Time. The three-way interaction was not statistically 
signifcant, ��� = 1.3, � = .52. There was a signifcant two-way 
interaction between scafolding and session,��� = 44.3, � ≤ .0001. 
All other two-way interactions were not statistically signifcant 
(� ′ � ≥ .279). Furthermore, a signifcant main efect of scafolding 
on the time it took to answer a question was found, ��� = 59.9, 
� ≤ .0001. The main efect of personalization and session were not 
statistically signifcant (� ′ � ≥ .08). 

The answer times in the scafolding conditions are shown in 
Figure 2 (bottom). Mann-Whitney U tests revealed a statistical 
signifcant diference between no scafolding ratio (2: 30 [25 35];3: 
31 [25 40]) and scafolding ratio (2: 21 [20 24];3: 21 [20 24]) in 
session 2, � = 696.5, � = −6.5, � ≤ .0001, Cohen’s � = 1.40, and 3, 
� = 479.5, � = −7.4, � ≤ .0001, Cohen’s � = 1.74. The diference in 
session 1 (25 [22 28] vs. 26 [23 33]) was not statistically signifcant, 
� = 1636.5, � = −1.56, � = .12. 
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Figure 2: Ratio of correct answers (Top) and average time in 
seconds participants took to provide a solution to a math 
problem (bottom) with 95% CI for all three sessions in the 
scafolding and no scafolding conditions. 

5.2 Robot Sociability 
To investigate that after three sessions personalization increases 
social presence and feelings of friendship while scafolding in-
creases solely social presence (H3, H4), two separate analyses of 
(co-)variance were performed with personalization and scafolding 
as between-subject factors, either social presence or feelings of 
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friendship as dependent variables, and gender and math level as 
covariates. Because of the expected direction of the relations, all 
the reported signifcance levels in this results section are based on 
one-tailed tests (all means and standard deviations are reported in 
the supplemental material). 

5.2.1 Social Presence. From all the individual social presence items, 
the analysis yielded a signifcant personalization x scafolding in-
teraction efect solely for item SP4 “Do you think the robot can have 
feelings (e.g. sadness or joy)?”, � (1, 122) = 2.79, � = .049. The esti-
mated marginal means indicated that only in the non-personalized 
conditions did children who were guided by the robot more of-
ten thought that robots can have feelings (� = 2.87, �� = .15) 
than children who received no guidance from the robot (� = 2.41, 
�� = .15). In the personalized conditions, the means between 
guided and non-guided children were both around 2.70. 

Furthermore, the analysis yielded a signifcant main efect of 
scafolding for item SP5 “Do you think the robot is a living creature?”, 
� (1, 122) = 3.88, � = .026. The estimated marginal means indicated 
that children who were guided by the robot more often thought 
that the robot is a living creature (� = 2.27, �� = .10) than children 
who received no guidance from the robot (� = 1.97, �� = .11). No 
other main efects of scafolding were signifcant, nor were there 
any signifcant main efects of personalization. 

5.2.2 Feelings of Friendship. No signifcant efects were found 
when the feelings of friendship scale was used as dependent vari-
able. For this reason, similar to social presence, the individual 
items of feelings of friendship were included in the analysis. This 
yielded a main efect of personalization on item F3 “Does the robot 
feel like a friend to you?”, � (1, 122) = 3.20, � = .038. The esti-
mated marginal means indicated that children in the personaliza-
tion condition more often felt that the robot was a friend to them 
(� = 3.64, �� = .07) than children in the non-personalized condi-
tion (� = 3.47, �� = .07). No other main efects of personalization 
were signifcant, nor were there any signifcant main efects of 
scafolding or interaction efects. 

6 DISCUSSION 

6.1 Math Performance 
Creating a more personal conversation and personalizing the math 
problems did not lead to a better math performance (rejection of 
hypotheses H1a and H1b). Scafolding on the other hand did result 
in more correct and faster answers over time (acceptance of H2a 
and H2b). After session 1, participants who received guidance after 
a mistake outperformed those who did not. 

An important question is what aspect of the scafolding caused 
the increase in performance. There is the instructional part of the 
guidance, the progressive schematization. And there is the behavior 
of the robot, lending a helping hand and providing a second attempt 
to solve the problem. In the no scafolding condition the robot pro-
vides the correct solution, without an explicit judgement, but also 
without help or second chance. Looking at the overall performance 
provides relevant context to address the question. 

Performance overall was high. Participants solved on average 
81% of the math problems correctly during the frst attempt. This 
is likely the result of the calibration of the difculty of the math 

problems. It was initially set on a low difculty and only gradually 
became more difcult. This was done to provide children the expe-
rience of success. Because the robot only provided guidance after 
an incorrect answer, a consequence of the high success rate is a low 
exposure to the guidance of the robot. It could be that participants 
quickly picked up schematization skills as a result of the instruction. 
Although typically this takes longer than a few exposures [7]. Thus, 
it is unlikely that the instructional part is the strongest contributor 
of the found efect. 

Getting a second chance reduces the risk of giving an answer you 
are unsure about, because you are able to correct it when you do get 
it wrong. This could explain why participants answer faster in the 
scafolding condition. Furthermore, one of the guiding principles 
of the storyworld we created is that the child and the robot are 
doing math together. Proving a helping hand, in the form of helpful 
instructions, is better in line with that narrative. They can count 
on the robot helping out whenever they make a mistake or get 
stuck. This could explain why aspects of the social presence of 
the robot was higher in the scafolding condition. Although this 
evidence is circumstantial, it could point to a mediating factor that 
the scafolding behaviors supported children’s math self-efcacy. 
Math self-efcacy is well established as a strong predictor for math 
performance [49, 51, 71]. 

The personalization behaviors did not afect the performance 
directly. Perhaps we were too optimistic with our expectations that 
it could infuence math performance. At least it also did not inhibit 
performance as reported by [31, 33]. The math stories were overall 
well appreciated and this appreciation was stronger when they 
were personalized. The more the stories were appreciated, the more 
positive the children were about doing math with the robot. The 
pay-of of this efect – children remaining interested in practicing 
math with the robot – is likely only noticeable after more sessions 
[39]. Personalization could lead to more math adherence and thus 
a better performance over a longer period of time. 

The set-up and measures we used were not sufcient to defni-
tively explain what caused the performance increase in the scafold-
ing condition and to explore the long-term efects of personalization 
on math performance. Those questions are left for future research, 
with more exposures and a more longitudinal character. What re-
mains though, is that scafolding improves math performance. 

6.2 Robot Sociability 
Personalizing the interaction and math problems did not convinc-
ingly increase the robot’s social presence after three sessions (H3a). 
It did, however, increase children’s feelings of friendship toward the 
robot (H3b). Specifcally, children in the personalization condition 
more often felt that the robot was a friend to them. Furthermore, 
providing guidance when children gave a wrong answer did indeed 
increase the robot’s social presence (H4a) in two ways: children 
more often thought that the robot could have feelings like sadness 
and joy, and believed that the robot was a living creature. As antic-
ipated, scafolding did not afect children’s feelings of friendship 
toward the robot (H4b). 

In line with [36, 64], scafolding made the robot more socially 
relevant by responding appropriately to children’s need for guid-
ance when they did not know the answer to the problem. That 

327



HRI ’23, March 13–16, 2023, Stockholm, Sweden Mike E.U. Ligthart et al. 

tuning into children’s needs makes a robot feel more like a real 
person, was also observed on the 4th manipulation question where 
children more often believed the robot to be a living creature when 
the robot adjusted the level of the problems to their own math level 
(� = .344, � < .001). Although an interaction efect was found of 
personalization and scafolding on the perception that the robot 
could have feelings, the impact in the personalization conditions 
was equal, and only a signifcant diference on social presence was 
found in the non-personalized conditions between the two scafold-
ing conditions. Further inspection indicated that personalization 
was positively related to children’s awareness that the robot used 
things they said while chatting to create a math story (� = .399, 
� < .001) and, in turn, this 2nd manipulation question was also 
positively related to the perception that the robot could have feel-
ings (� = .301, � = .004) (while not related to any of the other 
social perception items). Thus, it seems that only when children are 
aware of the fact that the robot uses memory-based personalization 
(similar to human interactions) do they believe that the robot can 
have feelings. However, further research is needed to convincingly 
support this theory. 

A reason why the other items of social presence were not af-
fected, could be because SP1-2-3 (i.e. “feels” like a real person, can 
see and understand me) can still be answered in the afrmative 
when the robot is seen as a (well-programmed) machine, while 
SP4-5 explicitly refer to humans as having feelings and being a 
living creature. Children varied more in their answers to SP4-5, 
as resembled in the lower mean scores on SP4-5 (compared to the 
scores on SP1-2-3). During the survey, we also observed that chil-
dren were more skeptical about SP4-5, unsure whether to answer 
them afrmatively, and took longer to answer them. Some children 
even had difculty understanding SP5 and asked the research assis-
tant for further clarifcation, indicating that “living creature” can 
still be a challenging concept for some 8-11-year olds. 

Consistent with [35, 64], memory-based personalization mimics 
human interactions, creating the feeling of having a conversation 
with someone who could be your friend. Using personal informa-
tion makes the interaction partner more likable as humans enjoy 
talking about themselves, stimulating a willingness to continue the 
conversation [65]. Children in our study also mentioned out loud 
that next time they would also like to know more about the robot, 
thus, showing an interest in the background story of the robot, 
which is an indication of initial friendship formation [9]. 

A reason why the other items of feelings of friendship were not 
afected, is their high mean scores (� > 3.7 on a 4-point-scale). 
Feeling more comfortable around the robot, wanting to chat further 
with the robot, do more activities with the robot, and wanting to 
see the robot more often could all be the result of a novelty efect 
that is still present after 3 short exposures (within 1 week). In a 
follow-up study, we will test whether these scores remain high 
after longer exposure. Given the still developing cognitive abilities 
of middle childhood and the parasocial nature of child-robot rela-
tionships, our feelings of friendship scale contained more concrete 
behavioral measures. It would be interesting to add measures of 
trust and closeness, which are more commonly used in child-robot 
relationship formation studies [64]. 

Finally, an interesting overall efect was observed that when 
children appreciated the stories, they also evaluated the robot more 

positively on almost all social presence and feelings of friendships 
items. Strong positive emotions evoked by media content are often 
by children transferred to everything associated with that content 
(afect transfer) [17]. However, it remains unclear whether engaging 
stories turn a robot into a more likable and realistic storyteller or 
whether children more actively attend to stories told by a more 
socially relevant robot. Further research is needed to disentangle 
this process. 

6.3 Limitations 
The core focus of this study was to get insight about if and how the 
positioning of math in the social space of child-robot interaction 
can improve math performance. The results we found should be 
primarily treated as formative in nature rather than summative. 
Especially given the fact that this was a short-term study, but with 
multiple interactions. Another limitation was the lacking construct 
validity of social presence and not measuring math self-efcacy. In 
future work we plan to report more behavioral measures and have 
a more long-term perspective. 

Furthermore, we did not compare our intervention with a non-
robot control condition, making it hard to compare it to the current 
day practice. Our intervention was primarily based on a verbal 
interaction. Although a tablet was present to visually display the 
math problem, this might not be sufcient for every child. Exploring 
a more multimodal social learning set-up and comparing it to the 
current situation is left for future work. 

7 CONCLUSION 
We presented a novel, social constructivist, design for using an 
autonomous social robot in math education. The math is part of a 
personal conversation with the robot. We provide concrete design 
specifcations of how the robot can personalize the conversation 
and keep the learning task in the Zone of Proximal Development 
by scafolding. We furthermore provide a clear strategy, by using a 
storyworld, for creating a collection of connected minidialogs to 
populate the conversation. The results of a three-session experi-
mental user study (� = 130, 8-11 y.o.) show that participants got 
better at math over time when the robot provided guidance. It is 
likely that not the educational content of the guidance, but rather 
the social support it ofers explains the performance increase. This 
is best illustrated by children feeling the robot was more alive and 
more capable of having emotions when it provided guidance. Fur-
thermore, the robot felt more as a friend when it personalized the 
conversation. The math dialogs were appreciated by the children, 
and this was even stronger when the dialogs were personalized. 
Collectively the results confrm that more strongly intertwining the 
robot’s social behaviors with the math task and scafolding leads to 
more efective and enjoyable learning. 
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